A deep learning-based histopathology classifier for Focal Cortical Dysplasia

被引:3
|
作者
Vorndran, Jorg [1 ,22 ]
Neuner, Christoph [1 ,22 ]
Coras, Roland [1 ,22 ]
Hoffmann, Lucas [1 ,22 ]
Geffers, Simon [1 ]
Honke, Jonas [1 ]
Herms, Jochen [2 ]
Roeber, Sigrun [2 ]
Hamer, Hajo [3 ,22 ]
Brandner, Sebastian [4 ,22 ]
Hartlieb, Till [5 ,6 ,22 ]
Pieper, Tom [6 ]
Kudernatsch, Manfred [6 ,7 ]
Bien, Christian G. [8 ]
Kalbhenn, Thilo [9 ]
Simon, Matthias [9 ]
Adle-Biassette, Homa [10 ,11 ]
Cienfuegos, Jesus [12 ]
Di Giacomo, Roberta [13 ,22 ]
Garbelli, Rita [13 ,22 ]
Miyata, Hajime [14 ]
Muhlebner, Angelika [15 ,16 ,22 ]
Raicevic, Savo [17 ]
Rauramaa, Tuomas [18 ,19 ,22 ]
Rogerio, Fabio [20 ,21 ]
Bluemcke, Ingmar [1 ,22 ]
Jabari, Samir [1 ,22 ]
机构
[1] Univ Klinikum Erlangen, Dept Neuropathol, Erlangen, Germany
[2] Ludwig Maximilian Univ Munchen, Zent Neuropathol, Munich, Germany
[3] FAU Erlangen Nurnberg, Univ Klinikum Erlangen, Epilepsy Ctr, Erlangen, Germany
[4] Univ Klinikum Erlangen, Dept Neurosurg, Erlangen, Germany
[5] Schoen Klin Vogtareuth, Ctr Pediat Neurol Neurorehabil & Epileptol, Vogtareuth, Germany
[6] Paracelsus Med Univ Salzburg, Res Inst Rehabil Transit Palliat, Salzburg, Austria
[7] Schoen Klin Vogtareuth, Ctr Neurosurg Epilepsy Surg Spine Surg & Scoliosi, Vogtareuth, Germany
[8] Univ Klinikum Ostwestfalen Lippe, Med Sch, Dept Epileptol Krankenhaus Mara, Bielefeld, Germany
[9] Univ Klinikum Ostwestfalen Lippe, Med Sch, Dept Neurosurg, Evangel Klinikum Bethel, Bielefeld, Germany
[10] Univ Paris Cite, NeuroDiderot, Inserm, Paris, France
[11] Hop Lariboisiere, AP HP, Serv Anat Pathol, Paris, France
[12] Hosp HMG, Int Ctr Epilepsy Surg, Mexico City, Mexico
[13] Fdn IRCCS Ist Neurol Carlo Besta, Epilepsy Unit, Milan, Italy
[14] Akita Cerebrospinal & Cardiovasc Ctr, Res Inst Brain & Blood Vessels, Dept Neuropathol, Akita, Japan
[15] Univ Med Ctr Utrecht, UMC Utrecht Brain Ctr, Dept Neuro Pathol, Utrecht, Netherlands
[16] Univ Utrecht, Utrecht, Netherlands
[17] Clin Ctr Serbia, Dept Pathol, Lab Neuropathol, Belgrade, Serbia
[18] Kuopio Univ Hosp, Dept Pathol, Kuopio, Finland
[19] Univ Eastern Finland, Kuopio, Finland
[20] Univ Estadual Campinas, Dept Pathol, Sao Paulo, Brazil
[21] Brazilian Inst Neurosci & Neurotechnol, Sao Paulo, Brazil
[22] EpiCare, European Reference Network ERN, Lyon, France
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 17期
关键词
Cortex; Epilepsy; Digital pathology; Deep learning; Classification; FCD2; MOGHE; mMCD; FCD1; Convolutional neuronal network; CONSENSUS CLASSIFICATION; EXTRACELLULAR-MATRIX; EPILEPSY SURGERY; BRAIN-TISSUE; TASK-FORCE; INTEROBSERVER; AGREEMENT; SPECTRUM;
D O I
10.1007/s00521-023-08364-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A light microscopy-based histopathology diagnosis of human brain specimens obtained from epilepsy surgery remains the gold standard to confirm the underlying cause of a patient's focal epilepsy and further inform postsurgical patient management. The differential diagnosis of neocortical specimens in the realm of epilepsy surgery remains, however, challenging. Herein, we developed an open access, deep learning-based classifier to histopathologically assess whole slide microscopy images (WSI) and to automatically recognize various subtypes of Focal Cortical Dysplasia (FCD), according to the ILAE consensus classification update of 2022. We trained a convolutional neuronal network (CNN) with fully digitalized WSI of hematoxylin-eosin stainings obtained from 125 patients covering the spectrum of mild malformation of cortical development (mMCD), mMCD with oligodendroglial hyperplasia in epilepsy (MOGHE), FCD ILAE Type 1a, 2a and 2b using 414 formalin-fixed and paraffin-embedded archival tissue blocks. An additional series of 198 postmortem tissue blocks from 59 patients without neurological disorders served as control to train the CNN for homotypic frontal, temporal and occipital areas and heterotypic Brodmann areas 4 and 17, entorhinal cortex and dentate gyrus. Special stains and immunohistochemical reactions were used to comprehensively annotate the region of interest. We then programmed a novel tile extraction pipeline and graphical dashboard to visualize all areas on the WSI recognized by the CNN. Our deep learning-based classifier is able to compute 1000 x 1000 mu m large tiles and recognizes 25 anatomical regions and FCD categories with an accuracy of 98.8% (F1 score = 0.82). Microscopic review of regions predicted by the network confirmed these results. This deep learning-based classifier will be made available as online web application to support the differential histopathology diagnosis in neocortical human brain specimens obtained from epilepsy surgery. It will also serve as blueprint to build a digital histopathology slide suite addressing all major brain diseases encountered in patients with surgically amenable focal epilepsy.
引用
收藏
页码:12775 / 12792
页数:18
相关论文
共 50 条
  • [1] A deep learning-based histopathology classifier for focal cortical dysplasia
    Vorndran, J.
    Bluemcke, I.
    Jabari, S.
    BRAIN PATHOLOGY, 2023, 33
  • [2] A deep learning-based histopathology classifier for Focal Cortical Dysplasia
    Jörg Vorndran
    Christoph Neuner
    Roland Coras
    Lucas Hoffmann
    Simon Geffers
    Jonas Honke
    Jochen Herms
    Sigrun Roeber
    Hajo Hamer
    Sebastian Brandner
    Till Hartlieb
    Tom Pieper
    Manfred Kudernatsch
    Christian G. Bien
    Thilo Kalbhenn
    Matthias Simon
    Homa Adle-Biassette
    Jesús Cienfuegos
    Roberta Di Giacomo
    Rita Garbelli
    Hajime Miyata
    Angelika Mühlebner
    Savo Raicevic
    Tuomas Rauramaa
    Fabio Rogerio
    Ingmar Blümcke
    Samir Jabari
    Neural Computing and Applications, 2023, 35 : 12775 - 12792
  • [3] A deep-learning-based histopathology classifier for focal cortical dysplasia (FCD) unravels a complex scenario of comorbid FCD subtypes
    Vorndran, Joerg
    Bluemcke, Ingmar
    EPILEPSIA, 2024, 65 (12) : 3501 - 3512
  • [4] Balloon-like cells histopathology detection of focal cortical dysplasia II based on deep learning
    Wang, J-Q
    Li, J-M
    EPILEPSIA, 2024, 65 : 3 - 3
  • [5] Deep learning-based automated lesion segmentation on pediatric focal cortical dysplasia II preoperative MRI: a reliable approach
    Siqi Zhang
    Yijiang Zhuang
    Yi Luo
    Fengjun Zhu
    Wen Zhao
    Hongwu Zeng
    Insights into Imaging, 15
  • [6] Deep learning-based automated lesion segmentation on pediatric focal cortical dysplasia II preoperative MRI: a reliable approach
    Zhang, Siqi
    Zhuang, Yijiang
    Luo, Yi
    Zhu, Fengjun
    Zhao, Wen
    Zeng, Hongwu
    INSIGHTS INTO IMAGING, 2024, 15 (01)
  • [7] FOCAL CORTICAL DYSPLASIA: MRI AND HISTOPATHOLOGY OF 83 CASES
    Santos, A. C.
    Simao, G. N.
    Velasco, T. R.
    Ozaki, J. T. R.
    Escorsi-Rosset, S. R.
    Pittella, J. E. H.
    Serafini, L. N.
    Sakamoto, A. C.
    EPILEPSIA, 2013, 54 : 309 - 310
  • [8] Multicenter Validation of a Deep Learning Detection Algorithm for Focal Cortical Dysplasia
    Gill, Ravnoor Singh
    Lee, Hyo-Min
    Caldairou, Benoit
    Hong, Seok-Jun
    Barba, Carmen
    Deleo, Francesco
    D'Incerti, Ludovico
    Mendes Coelho, Vanessa Cristina
    Lenge, Matteo
    Semmelroch, Mira
    Schrader, Dewi Victoria
    Bartolomei, Fabrice
    Guye, Maxime
    Schulze-Bonhage, Andreas
    Urbach, Horst
    Cho, Kyoo Ho
    Cendes, Fernando
    Guerrini, Renzo
    Jackson, Graeme
    Hogan, R. Edward
    Bernasconi, Neda
    Bernasconi, Andrea
    NEUROLOGY, 2021, 97 (16) : E1571 - E1582
  • [9] Visualizing Deep Learning-Based Radio Modulation Classifier
    Huang, Liang
    Zhang, You
    Pan, Weijian
    Chen, Jinyin
    Qian, Li Ping
    Wu, Yuan
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (01) : 47 - 58
  • [10] Type I focal cortical dysplasia: surgical outcome is related to histopathology
    Tassi, Laura
    Garbelli, Rita
    Colombo, Nadia
    Bramerio, Manuela
    Lo Russo, Giorgio
    Deleo, Francesco
    Milesi, Gloria
    Spreafico, Roberto
    EPILEPTIC DISORDERS, 2010, 12 (03) : 181 - 191