A deep learning-based histopathology classifier for Focal Cortical Dysplasia

被引:3
|
作者
Vorndran, Jorg [1 ,22 ]
Neuner, Christoph [1 ,22 ]
Coras, Roland [1 ,22 ]
Hoffmann, Lucas [1 ,22 ]
Geffers, Simon [1 ]
Honke, Jonas [1 ]
Herms, Jochen [2 ]
Roeber, Sigrun [2 ]
Hamer, Hajo [3 ,22 ]
Brandner, Sebastian [4 ,22 ]
Hartlieb, Till [5 ,6 ,22 ]
Pieper, Tom [6 ]
Kudernatsch, Manfred [6 ,7 ]
Bien, Christian G. [8 ]
Kalbhenn, Thilo [9 ]
Simon, Matthias [9 ]
Adle-Biassette, Homa [10 ,11 ]
Cienfuegos, Jesus [12 ]
Di Giacomo, Roberta [13 ,22 ]
Garbelli, Rita [13 ,22 ]
Miyata, Hajime [14 ]
Muhlebner, Angelika [15 ,16 ,22 ]
Raicevic, Savo [17 ]
Rauramaa, Tuomas [18 ,19 ,22 ]
Rogerio, Fabio [20 ,21 ]
Bluemcke, Ingmar [1 ,22 ]
Jabari, Samir [1 ,22 ]
机构
[1] Univ Klinikum Erlangen, Dept Neuropathol, Erlangen, Germany
[2] Ludwig Maximilian Univ Munchen, Zent Neuropathol, Munich, Germany
[3] FAU Erlangen Nurnberg, Univ Klinikum Erlangen, Epilepsy Ctr, Erlangen, Germany
[4] Univ Klinikum Erlangen, Dept Neurosurg, Erlangen, Germany
[5] Schoen Klin Vogtareuth, Ctr Pediat Neurol Neurorehabil & Epileptol, Vogtareuth, Germany
[6] Paracelsus Med Univ Salzburg, Res Inst Rehabil Transit Palliat, Salzburg, Austria
[7] Schoen Klin Vogtareuth, Ctr Neurosurg Epilepsy Surg Spine Surg & Scoliosi, Vogtareuth, Germany
[8] Univ Klinikum Ostwestfalen Lippe, Med Sch, Dept Epileptol Krankenhaus Mara, Bielefeld, Germany
[9] Univ Klinikum Ostwestfalen Lippe, Med Sch, Dept Neurosurg, Evangel Klinikum Bethel, Bielefeld, Germany
[10] Univ Paris Cite, NeuroDiderot, Inserm, Paris, France
[11] Hop Lariboisiere, AP HP, Serv Anat Pathol, Paris, France
[12] Hosp HMG, Int Ctr Epilepsy Surg, Mexico City, Mexico
[13] Fdn IRCCS Ist Neurol Carlo Besta, Epilepsy Unit, Milan, Italy
[14] Akita Cerebrospinal & Cardiovasc Ctr, Res Inst Brain & Blood Vessels, Dept Neuropathol, Akita, Japan
[15] Univ Med Ctr Utrecht, UMC Utrecht Brain Ctr, Dept Neuro Pathol, Utrecht, Netherlands
[16] Univ Utrecht, Utrecht, Netherlands
[17] Clin Ctr Serbia, Dept Pathol, Lab Neuropathol, Belgrade, Serbia
[18] Kuopio Univ Hosp, Dept Pathol, Kuopio, Finland
[19] Univ Eastern Finland, Kuopio, Finland
[20] Univ Estadual Campinas, Dept Pathol, Sao Paulo, Brazil
[21] Brazilian Inst Neurosci & Neurotechnol, Sao Paulo, Brazil
[22] EpiCare, European Reference Network ERN, Lyon, France
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 17期
关键词
Cortex; Epilepsy; Digital pathology; Deep learning; Classification; FCD2; MOGHE; mMCD; FCD1; Convolutional neuronal network; CONSENSUS CLASSIFICATION; EXTRACELLULAR-MATRIX; EPILEPSY SURGERY; BRAIN-TISSUE; TASK-FORCE; INTEROBSERVER; AGREEMENT; SPECTRUM;
D O I
10.1007/s00521-023-08364-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A light microscopy-based histopathology diagnosis of human brain specimens obtained from epilepsy surgery remains the gold standard to confirm the underlying cause of a patient's focal epilepsy and further inform postsurgical patient management. The differential diagnosis of neocortical specimens in the realm of epilepsy surgery remains, however, challenging. Herein, we developed an open access, deep learning-based classifier to histopathologically assess whole slide microscopy images (WSI) and to automatically recognize various subtypes of Focal Cortical Dysplasia (FCD), according to the ILAE consensus classification update of 2022. We trained a convolutional neuronal network (CNN) with fully digitalized WSI of hematoxylin-eosin stainings obtained from 125 patients covering the spectrum of mild malformation of cortical development (mMCD), mMCD with oligodendroglial hyperplasia in epilepsy (MOGHE), FCD ILAE Type 1a, 2a and 2b using 414 formalin-fixed and paraffin-embedded archival tissue blocks. An additional series of 198 postmortem tissue blocks from 59 patients without neurological disorders served as control to train the CNN for homotypic frontal, temporal and occipital areas and heterotypic Brodmann areas 4 and 17, entorhinal cortex and dentate gyrus. Special stains and immunohistochemical reactions were used to comprehensively annotate the region of interest. We then programmed a novel tile extraction pipeline and graphical dashboard to visualize all areas on the WSI recognized by the CNN. Our deep learning-based classifier is able to compute 1000 x 1000 mu m large tiles and recognizes 25 anatomical regions and FCD categories with an accuracy of 98.8% (F1 score = 0.82). Microscopic review of regions predicted by the network confirmed these results. This deep learning-based classifier will be made available as online web application to support the differential histopathology diagnosis in neocortical human brain specimens obtained from epilepsy surgery. It will also serve as blueprint to build a digital histopathology slide suite addressing all major brain diseases encountered in patients with surgically amenable focal epilepsy.
引用
收藏
页码:12775 / 12792
页数:18
相关论文
共 50 条
  • [41] An automated bedside measure for monitoring neonatal cortical activity: a supervised deep learning-based electroencephalogram classifier with external cohort validation
    Moghadam S.M.
    Airaksinen M.
    Nevalainen P.
    Marchi V.
    Hellström-Westas L.
    Stevenson N.J.
    Vanhatalo S.
    The Lancet Digital Health, 2022, 4 (12): : e884 - e892
  • [42] An automated bedside measure for monitoring neonatal cortical activity: a supervised deep learning-based electroencephalogram classifier with external cohort validation
    Moghadam, Saeed Montazeri
    Airaksinen, Manu
    Nevalainen, Paivi
    Marchi, Viviana
    Hellstrom-Westas, Lena
    Stevenson, Nathan J.
    Vanhatalo, Sampsa
    LANCET DIGITAL HEALTH, 2022, 4 (12): : E884 - E892
  • [43] Adapted Deep Ensemble Learning-Based Voting Classifier for Osteosarcoma Cancer Classification
    Walid, Md. Abul Ala
    Mollick, Swarnali
    Shill, Pintu Chandra
    Baowaly, Mrinal Kanti
    Islam, Md. Rabiul
    Ahamad, Md. Martuza
    Othman, Manal A.
    Samad, Md Abdus
    DIAGNOSTICS, 2023, 13 (19)
  • [44] Developing a deep learning model to predict epilepsy recurrence in patients with focal cortical dysplasia type III
    Wang, Xiaozhuan
    Guan, Xueqin
    Fang, Liguang
    Cai, Qinxin
    Wang, Wensheng
    Zhou, Quan
    Zhou, Yujia
    Deng, Dabiao
    Li, Honglin
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (02) : 999 - +
  • [45] Implementation of Deep Learning-Based Automatic Modulation Classifier on FPGA SDR Platform
    Tang, Zhi-Ling
    Li, Si-Min
    Yu, Li-Juan
    ELECTRONICS, 2018, 7 (07)
  • [46] Deep learning-based sow posture classifier using colour and depth images
    Pacheco, Veronica Madeira
    Brown-Brandl, Tami M.
    Sousa, Rafael Vieira de
    Rohrer, Gary A.
    Sharma, Sudhendu Raj
    Martello, Luciane Silva
    SMART AGRICULTURAL TECHNOLOGY, 2024, 9
  • [47] A Deep Learning-Based Tumor Classifier Directly Using MS Raw Data
    Dong, Hao
    Liu, Yi
    Zeng, Wen-Feng
    Shu, Kunxian
    Zhu, Yunping
    Chang, Cheng
    PROTEOMICS, 2020, 20 (21-22)
  • [48] A deep learning-based algorithm for detection of cortical arousal during sleep
    Li, Ao
    Chen, Siteng
    Quan, Stuart F.
    Powers, Linda S.
    Roveda, Janet M.
    SLEEP, 2020, 43 (12)
  • [49] MRI of focal cortical dysplasia
    Urbach, Horst
    Kellner, Elias
    Kremers, Nico
    Bluemcke, Ingmar
    Demerath, Theo
    NEURORADIOLOGY, 2022, 64 (03) : 443 - 452
  • [50] Focal cortical dysplasia in children
    Hilbig, A
    Babb, TL
    Najm, I
    Ying, Z
    Wyllie, E
    Bingaman, W
    DEVELOPMENTAL NEUROSCIENCE, 1999, 21 (3-5) : 271 - 280