Multicenter Validation of a Deep Learning Detection Algorithm for Focal Cortical Dysplasia

被引:53
|
作者
Gill, Ravnoor Singh [1 ]
Lee, Hyo-Min [1 ]
Caldairou, Benoit [1 ]
Hong, Seok-Jun [1 ]
Barba, Carmen [2 ]
Deleo, Francesco [3 ]
D'Incerti, Ludovico [4 ]
Mendes Coelho, Vanessa Cristina [5 ]
Lenge, Matteo [2 ]
Semmelroch, Mira [6 ,7 ]
Schrader, Dewi Victoria [8 ]
Bartolomei, Fabrice [9 ]
Guye, Maxime [10 ]
Schulze-Bonhage, Andreas [11 ]
Urbach, Horst [11 ]
Cho, Kyoo Ho [12 ]
Cendes, Fernando [5 ]
Guerrini, Renzo [2 ]
Jackson, Graeme [6 ,7 ]
Hogan, R. Edward [13 ]
Bernasconi, Neda [1 ]
Bernasconi, Andrea [1 ]
机构
[1] McGill Univ, Neuroimaging Epilepsy Lab, Montreal Neurol Inst, Montreal, PQ, Canada
[2] Childrens Hosp A Meyer Univ Florence, Pediat Neurol Unit & Labs, Florence, Italy
[3] Fdn IRCCS Ist Neurol C Besta, Epilepsy Unit, Milan, Italy
[4] Fdn IRCCS Ist Neurol C Besta, Neuroradiol, Milan, Italy
[5] Univ Estadual Campinas, Dept Neurol, Campinas, Brazil
[6] Florey Inst Neurosci & Mental Hlth, Parkville, Vic, Australia
[7] Univ Melbourne, Melbourne, Vic, Australia
[8] British Columbia Childrens Hosp, Dept Pediat, Vancouver, BC, Canada
[9] Aix Marseille Univ, INSERM UMR 1106, Inst Neurosci Syst, Marseille, France
[10] Aix Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France
[11] Univ Klinikum Freiburg, Freiburg Epilepsy Ctr, Freiburg, Germany
[12] Yonsei Univ, Coll Med, Dept Neurol, Seoul, South Korea
[13] Washington Univ, Sch Med, Dept Neurol, St Louis, MO 63110 USA
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
EPILEPSY SURGERY; AUTOMATED DETECTION; DIAGNOSTIC METHODS; MRI; COMPLICATIONS; FEATURES; LESIONS;
D O I
10.1212/WNL.0000000000012698
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and Objective To test the hypothesis that a multicenter-validated computer deep learning algorithm detects MRI-negative focal cortical dysplasia (FCD). Methods We used clinically acquired 3-dimensional (3D) T1-weighted and 3D fluid-attenuated inversion recovery MRI of 148 patients (median age 23 years [range 2-55 years]; 47% female) with histologically verified FCD at 9 centers to train a deep convolutional neural network (CNN) classifier. Images were initially deemed MRI-negative in 51% of patients, in whom intracranial EEG determined the focus. For risk stratification, the CNN incorporated bayesian uncertainty estimation as a measure of confidence. To evaluate performance, detection maps were compared to expert FCD manual labels. Sensitivity was tested in an independent cohort of 23 cases with FCD (13 +/- 10 years). Applying the algorithm to 42 healthy controls and 89 controls with temporal lobe epilepsy disease tested specificity. Results Overall sensitivity was 93% (137 of 148 FCD detected) using a leave-one-site-out cross-validation, with an average of 6 false positives per patient. Sensitivity in MRI-negative FCD was 85%. In 73% of patients, the FCD was among the clusters with the highest confidence; in half, it ranked the highest. Sensitivity in the independent cohort was 83% (19 of 23; average of 5 false positives per patient). Specificity was 89% in healthy and disease controls. Discussion This first multicenter-validated deep learning detection algorithm yields the highest sensitivity to date in MRI-negative FCD. By pairing predictions with risk stratification, this classifier may assist clinicians in adjusting hypotheses relative to other tests, increasing diagnostic confidence. Moreover, generalizability across age and MRI hardware makes this approach ideal for presurgical evaluation of MRI-negative epilepsy. Classification of Evidence This study provides Class III evidence that deep learning on multimodal MRI accurately identifies FCD in patients with epilepsy initially diagnosed as MRI negative.
引用
收藏
页码:E1571 / E1582
页数:12
相关论文
共 50 条
  • [1] Multicenter Validation of a Deep Learning Detection Algorithm for Focal Cortical Dysplasia (vol 97, pg e1571, 2021)
    Gill, R. S.
    Lee, H. M.
    Caldairou, B.
    NEUROLOGY, 2022, 98 (21) : 907 - 907
  • [2] Automated Detection and Surgical Planning for Focal Cortical Dysplasia with Multicenter Validation
    Mo, Jiajie
    Zhang, Jianguo
    Hu, Wenhan
    Sang, Lin
    Zheng, Zhong
    Zhou, Wenjing
    Wang, Haixiang
    Zhu, Junming
    Zhang, Chao
    Wang, Xiu
    Zhang, Kai
    NEUROSURGERY, 2022, 91 (05) : 799 - 807
  • [3] A deep learning-based histopathology classifier for focal cortical dysplasia
    Vorndran, J.
    Bluemcke, I.
    Jabari, S.
    BRAIN PATHOLOGY, 2023, 33
  • [4] A deep learning-based histopathology classifier for Focal Cortical Dysplasia
    Jörg Vorndran
    Christoph Neuner
    Roland Coras
    Lucas Hoffmann
    Simon Geffers
    Jonas Honke
    Jochen Herms
    Sigrun Roeber
    Hajo Hamer
    Sebastian Brandner
    Till Hartlieb
    Tom Pieper
    Manfred Kudernatsch
    Christian G. Bien
    Thilo Kalbhenn
    Matthias Simon
    Homa Adle-Biassette
    Jesús Cienfuegos
    Roberta Di Giacomo
    Rita Garbelli
    Hajime Miyata
    Angelika Mühlebner
    Savo Raicevic
    Tuomas Rauramaa
    Fabio Rogerio
    Ingmar Blümcke
    Samir Jabari
    Neural Computing and Applications, 2023, 35 : 12775 - 12792
  • [5] A deep learning-based histopathology classifier for Focal Cortical Dysplasia
    Vorndran, Jorg
    Neuner, Christoph
    Coras, Roland
    Hoffmann, Lucas
    Geffers, Simon
    Honke, Jonas
    Herms, Jochen
    Roeber, Sigrun
    Hamer, Hajo
    Brandner, Sebastian
    Hartlieb, Till
    Pieper, Tom
    Kudernatsch, Manfred
    Bien, Christian G.
    Kalbhenn, Thilo
    Simon, Matthias
    Adle-Biassette, Homa
    Cienfuegos, Jesus
    Di Giacomo, Roberta
    Garbelli, Rita
    Miyata, Hajime
    Muhlebner, Angelika
    Raicevic, Savo
    Rauramaa, Tuomas
    Rogerio, Fabio
    Bluemcke, Ingmar
    Jabari, Samir
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (17): : 12775 - 12792
  • [6] Balloon-like cells histopathology detection of focal cortical dysplasia II based on deep learning
    Wang, J-Q
    Li, J-M
    EPILEPSIA, 2024, 65 : 3 - 3
  • [7] A machine learning model for the detection of focal cortical dysplasia in FLAIR MRIs
    McManis, M.
    Perkins, F. F.
    EPILEPSIA, 2023, 64 : 548 - 549
  • [8] External validation of automated focal cortical dysplasia detection using morphometric analysis
    David, Bastian
    Kroell-Seger, Judith
    Schuch, Fabiane
    Wagner, Jan
    Wellmer, Jorg
    Woermann, Friedrich
    Oehl, Bernhard
    Van Paesschen, Wim
    Breyer, Tobias
    Becker, Albert
    Vatter, Hartmut
    Hattingen, Elke
    Urbach, Horst
    Weber, Bernd
    Surges, Rainer
    Elger, Christian Erich
    Huppertz, Hans-Juergen
    Rueber, Theodor
    EPILEPSIA, 2021, 62 (04) : 1005 - 1021
  • [9] Automated detection of focal cortical dysplasia using a deep convolutional neural network
    Wang, Huiquan
    Ahmed, S. Nizam
    Mandal, Mrinal
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 79
  • [10] Focal cortical dysplasia (type II) detection with multi-modal MRI and a deep-learning framework
    Anand Shankar
    Manob Jyoti Saikia
    Samarendra Dandapat
    Shovan Barma
    npj Imaging, 2 (1):