Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms

被引:33
|
作者
Tian, Shang [1 ]
Guo, Hongwei [1 ]
Xu, Wang [2 ]
Zhu, Xiaotong [1 ]
Wang, Bo [1 ]
Zeng, Qinghuai [2 ]
Mai, Youquan [2 ]
Huang, Jinhui Jeanne [1 ]
机构
[1] Nankai Univ, Coll Environm Sci & Engn Sino Canada Joint R&D Ct, Tianjin, Peoples R China
[2] Shenzhen Environm Monitoring Ctr Stn, Shenzhen, Peoples R China
基金
国家重点研发计划;
关键词
Remote sensing; Water quality; Machine learning; Non-optically active parameters; Sentinel-2; Inland waters; CHLOROPHYLL-A; COASTAL; RESERVOIR; COLOR; OCEAN; LANDSAT; ERROR;
D O I
10.1007/s11356-022-23431-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remote sensing has long been an effective method for water quality monitoring because of its advantages such as high coverage and low consumption. For non-optically active parameters, traditional empirical and analytical methods cannot achieve quantitative retrieval. Machine learning has been gradually used for water quality retrieval due to its ability to capture the potential relationship between water quality parameters and satellite images. This study is based on Sentinel-2 images and compared the ability of four machine learning algorithms (eXtreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), Random Forest (RF), and Artificial Neural Network (ANN)) to retrieve chlorophyll-a (Chl-a), dissolved oxygen (DO), and ammonia-nitrogen (NH3-N) for inland reservoirs. The results indicated that XGBoost outperformed the other three algorithms. We used XGBoost to reconstruct the spatial-temporal patterns of Chl-a, DO, and NH3-N for the period of 2018-2020 and further analyzed the interannual, seasonal, and spatial variation characteristics. This study provides an efficient and practical way for optically and non-optically active parameters monitoring and management at the regional scale.
引用
收藏
页码:18617 / 18630
页数:14
相关论文
共 50 条
  • [21] MACHINE LEARNING METHODS FOR WATER QUALITY MONITORING OVER FINGER LAKES USING SENTINEL-2
    Khan, Rabia Munsaf
    Salehi, Bahram
    Mahdianpari, Masoud
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6316 - 6319
  • [22] Retrieval of Water Quality Parameters in Dianshan Lake Based on Sentinel-2 MSI Imagery and Machine Learning: Algorithm Evaluation and Spatiotemporal Change Research
    Dong, Lei
    Gong, Cailan
    Huai, Hongyan
    Wu, Enuo
    Lu, Zhihua
    Hu, Yong
    Li, Lan
    Yang, Zhe
    [J]. REMOTE SENSING, 2023, 15 (20)
  • [23] Comparison of Machine Learning Regression Algorithms for Cotton Leaf Area Index Retrieval Using Sentinel-2 Spectral Bands
    Mao, Huihui
    Meng, Jihua
    Ji, Fujiang
    Zhang, Qiankun
    Fang, Huiting
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (07):
  • [24] Remote Sensing of Coastal Water-quality Parameters from Sentinel-2 Satellite Data in the Tyrrhenian and Adriatic Seas
    Iacobolli, Michele
    Orlandi, Massimo
    Cimini, Domenico
    Marzano, Frank S.
    [J]. 2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 2783 - 2788
  • [25] RETRIEVAL OF CASE 2 WATER QUALITY PARAMETERS WITH MACHINE LEARNING
    Ruescas, Ana B.
    Mateo-Garcia, Gonzalo
    Camps-Valls, Gustau
    Hieronymi, Martin
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 124 - 127
  • [26] Application of machine learning algorithms and Sentinel-2 satellite for improved bathymetry retrieval in Lake Victoria, Tanzania
    Mabula, Makemie J.
    Kisanga, Danielson
    Pamba, Siajali
    [J]. EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2023, 26 (03): : 619 - 627
  • [27] Validation of Water Quality Monitoring Algorithms for Sentinel-2 and Sentinel-3 in Mediterranean Inland Waters with In Situ Reflectance Data
    Soria-Perpinya, Xavier
    Vicente, Eduardo
    Urrego, Patricia
    Pereira-Sandoval, Marcela
    Tenjo, Carolina
    Ruiz-Verdu, Antonio
    Delegido, Jesus
    Soria, Juan Miguel
    Pena, Ramon
    Moreno, Jose
    [J]. WATER, 2021, 13 (05)
  • [28] Ensemble of Pruned Bagged Mixture Density Networks for Improved Water Quality Retrieval Using Sentinel-2 and Landsat-8 Remote Sensing Data
    Dehkordi, Alireza Taheri
    Hashemi, Hossein
    Naghibi, Amir
    Mehran, Ali
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [29] Soil salinity prediction using Machine Learning and Sentinel-2 Remote Sensing Data in Hyper-Arid areas
    Kaplan, Gordana
    Gasparovic, Mateo
    Alqasemi, Abduldaem S.
    Aldhaheri, Alya
    Abuelgasim, Abdelgadir
    Ibrahim, Majed
    [J]. PHYSICS AND CHEMISTRY OF THE EARTH, 2023, 130
  • [30] Water clarity in Brazilian water assessed using Sentinel-2 and machine learning methods
    Maciel, Daniel Andrade
    Faria Barbosa, Claudio Clemente
    Leao de Moraes Novo, Evlyn Marcia
    Flores Junior, Rogerio
    Begliomini, Felipe Nincao
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 182 : 134 - 152