RETRIEVAL OF CASE 2 WATER QUALITY PARAMETERS WITH MACHINE LEARNING

被引:0
|
作者
Ruescas, Ana B. [1 ]
Mateo-Garcia, Gonzalo [1 ]
Camps-Valls, Gustau [1 ]
Hieronymi, Martin [2 ]
机构
[1] Univ Valencia, IPL, Valencia, Spain
[2] Helmholtz Zentrum Geesthacht, Inst Coastal Res, Geesthacht, Germany
基金
欧洲研究理事会;
关键词
Remote Sensing; Water Quality Parameters; Case 2 Absorbing Waters; Machine Learning Regression;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Water quality parameters are derived applying several machine learning regression methods on the Case2eXtreme dataset (C2X). The used data are based on Hydrolight in-water radiative transfer simulations at Sentinel-3 OLCI wavebands, and the application is done exclusively for absorbing waters with high concentrations of coloured dissolved organic matter (CDOM). The regression approaches are: regularized linear, random forest, Kernel ridge, Gaussian process and support vector regressors. The validation is made with and an independent simulation dataset. A comparison with the OLCI Neural Network Swarm (ONSS) is made as well. The best approached is applied to a sample scene and compared with the standard OLCI product delivered by EUMETSAT/ESA.
引用
收藏
页码:124 / 127
页数:4
相关论文
共 50 条
  • [1] Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms
    Tian, Shang
    Guo, Hongwei
    Xu, Wang
    Zhu, Xiaotong
    Wang, Bo
    Zeng, Qinghuai
    Mai, Youquan
    Huang, Jinhui Jeanne
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (07) : 18617 - 18630
  • [2] Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms
    Shang Tian
    Hongwei Guo
    Wang Xu
    Xiaotong Zhu
    Bo Wang
    Qinghuai Zeng
    Youquan Mai
    Jinhui Jeanne Huang
    [J]. Environmental Science and Pollution Research, 2023, 30 : 18617 - 18630
  • [3] Retrieval of Water Quality Parameters Based on Near-Surface Remote Sensing and Machine Learning Algorithm
    Zhao, Yubo
    Yu, Tao
    Hu, Bingliang
    Zhang, Zhoufeng
    Liu, Yuyang
    Liu, Xiao
    Liu, Hong
    Liu, Jiacheng
    Wang, Xueji
    Song, Shuyao
    [J]. REMOTE SENSING, 2022, 14 (21)
  • [4] Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-II Waters: A Case Study of Hong Kong
    Hafeez, Sidrah
    Wong, Man Sing
    Ho, Hung Chak
    Nazeer, Majid
    Nichol, Janet
    Abbas, Sawaid
    Tang, Danling
    Lee, Kwon Ho
    Pun, Lilian
    [J]. REMOTE SENSING, 2019, 11 (06)
  • [5] Predicting Water Quality Parameters in Lake Pontchartrain using Machine Learning
    Daniels, Alexis
    Koutsougeras, Cris
    [J]. 5TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND DATA MINING (ICISDM 2021), 2021, : 28 - 33
  • [6] Implementation of :Machine Learning Methods for Monitoring and Predicting Water Quality Parameters
    Hayder, Gasim
    Kurniawan, Isman
    Mustafa, Hauwa Mohammed
    [J]. BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2021, 11 (02): : 9285 - 9295
  • [7] Medium-Sized Lake Water Quality Parameters Retrieval Using Multispectral UAV Image and Machine Learning Algorithms: A Case Study of the Yuandang Lake, China
    Lo, Ying
    Fu, Lang
    Lu, Tiancheng
    Huang, Hong
    Kong, Lingrong
    Xu, Yunqing
    Zhang, Cheng
    [J]. DRONES, 2023, 7 (04)
  • [8] Retrieval of Water Quality Parameters in Dianshan Lake Based on Sentinel-2 MSI Imagery and Machine Learning: Algorithm Evaluation and Spatiotemporal Change Research
    Dong, Lei
    Gong, Cailan
    Huai, Hongyan
    Wu, Enuo
    Lu, Zhihua
    Hu, Yong
    Li, Lan
    Yang, Zhe
    [J]. REMOTE SENSING, 2023, 15 (20)
  • [9] Toward a Semiautomatic Machine Learning Retrieval of Biophysical Parameters
    Rivera Caicedo, Juan Pablo
    Verrelst, Jochem
    Munoz-Mari, Jordi
    Moreno, Jose
    Camps-Valls, Gustavo
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (04) : 1249 - 1259
  • [10] MACHINE LEARNING CLASSIFICATION, FEATURE RANKING AND REGRESSION FOR WATER QUALITY PARAMETERS RETRIEVAL IN VARIOUS OPTICAL WATER TYPES FROM HYPER-SPECTRAL OBSERVATIONS
    Blix, Katalin
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5608 - 5611