Exploring a general convolutional neural network-based prediction model for critical casting diameter of metallic glasses

被引:7
|
作者
Hu, Jing [1 ]
Yang, Songran [1 ]
Mao, Jun [1 ]
Shi, Chaojie [1 ]
Wang, Guangchuan [2 ]
Liu, Yijing [2 ]
Pu, Xuemei [1 ]
机构
[1] Sichuan Univ, Coll Chem, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu 610064, Peoples R China
关键词
Metallic glasses; Machine learning; Critical casting diameter; Glass -forming ability; HIGH ENTROPY ALLOYS; FORMING ABILITY; PHASE;
D O I
10.1016/j.jallcom.2023.169479
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metallic glasses (MGs) as emerging amorphous materials have attracted considerable interest due to their excellent mechanical, physical, and chemical properties. However, the poor glass-forming ability (GFA) of MGs makes them difficult to produce large specimen sizes required by engineering applications. Traditional design on MGs mainly relies on empirical rules, thus being limited in the accuracy and generality, in turn leading to slow development of MGs. Motivated by the issue, we hope to utilize the powerful learning capability of deep learning to mine the relationship between the metallic glass structure and the critical casting diameter (Dmax ) such that develop a universal and accurate tool to aid the experimental in-vestigation. Based on a reliable metallic glass dataset of 1121 unique alloys collected from literature, we introduce a periodic table representation (PTR) strategy to characterize the MG structure, which only needs the information of alloy composition such that can avoid feature engineering involving domain knowledge. Based on the image representation, we accordingly construct a convolutional neural network to effectively extract the structure feature from PTR, and then follow a fully connected neural network to realize the Dmax prediction. In addition, two data augmentation strategies are introduced to address the dependence of deep learning on big data, through which the model performance is indeed improved. In particular, the pairwise difference regression (PADRE) strategy exhibits better performance than the Mixup augmentation way, as PADRE targets the difference between sample pairs such that can to some extent drop the systematic error of experimental determination. The principal component analysis (PCA) analysis further confirms the ef-fectiveness of the PTR representation and the powerful capacity of CNN to extract structural information from PTR. Benefited from the technical advantages, our deep learning model achieves satisfactory perfor-mance with R2 of 0.822 for unseen samples in the independent test set, which outperforms two competitive models using traditional machine learning algorithms coupled with hand-selection features, further de-monstrating the advantage of our model in the universality and accuracy.(c) 2023 Published by Elsevier B.V.
引用
收藏
页数:9
相关论文
共 50 条
  • [2] Convolutional neural network-based liquefaction prediction model and interpretability analysis
    Long, Xiao
    Sun, Rui
    Zheng, Tong
    Yantu Lixue/Rock and Soil Mechanics, 2024, 45 (09): : 2741 - 2753
  • [3] Prediction of glass forming ability of bulk metallic glasses based on convolutional neural network
    Zhang, Ting
    Long, Zhilin
    Peng, Li
    Li, Zhuang
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2022, 595
  • [4] A CONVOLUTIONAL NEURAL NETWORK-BASED MODEL OF NEURAL PATHWAYS IN THE RETINA
    Zamani, Yasin
    Nategh, Neda
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 6906 - 6909
  • [5] Evaluation of glass formation and critical casting diameter in Al-based metallic glasses
    Liao, J. P.
    Yang, B. J.
    Zhang, Y.
    Lu, W. Y.
    Gu, X. J.
    Wang, J. Q.
    MATERIALS & DESIGN, 2015, 88 : 222 - 226
  • [6] Cr-Prom: A Convolutional Neural Network-Based Model for the Prediction of Rice Promoters
    Shujaat, Muhammad
    Lee, Seung Beop
    Tayara, Hilal
    Chong, Kil To
    IEEE ACCESS, 2021, 9 : 81485 - 81491
  • [7] A convolutional neural network-based proxy model for field production prediction and history matching
    Yan, Bingyang
    Zhong, Zhi
    Bai, Bin
    GAS SCIENCE AND ENGINEERING, 2024, 122
  • [8] Research on artificial neural network-based prediction model for the critical thickness of RDX
    Liu, Yu-Cun
    Yu, Guo-Qiang
    Dong, Guo-Qing
    Binggong Xuebao/Acta Armamentarii, 2010, 31 (10): : 1394 - 1397
  • [9] Convolutional neural network-based regression for depth prediction in digital holography
    Shimobaba, Tomoyoshi
    Kakue, Takashi
    Ito, Tomoyoshi
    2018 IEEE 27TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2018, : 1323 - 1326
  • [10] Convolutional Neural Network-Based Compound Fingerprint Prediction for Metabolite Annotation
    Gao, Shijinqiu
    Chau, Hoi Yan Katharine
    Wang, Kuijun
    Ao, Hongyu
    Varghese, Rency S.
    Ressom, Habtom W.
    METABOLITES, 2022, 12 (07)