Exploring a general convolutional neural network-based prediction model for critical casting diameter of metallic glasses

被引:7
|
作者
Hu, Jing [1 ]
Yang, Songran [1 ]
Mao, Jun [1 ]
Shi, Chaojie [1 ]
Wang, Guangchuan [2 ]
Liu, Yijing [2 ]
Pu, Xuemei [1 ]
机构
[1] Sichuan Univ, Coll Chem, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu 610064, Peoples R China
关键词
Metallic glasses; Machine learning; Critical casting diameter; Glass -forming ability; HIGH ENTROPY ALLOYS; FORMING ABILITY; PHASE;
D O I
10.1016/j.jallcom.2023.169479
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metallic glasses (MGs) as emerging amorphous materials have attracted considerable interest due to their excellent mechanical, physical, and chemical properties. However, the poor glass-forming ability (GFA) of MGs makes them difficult to produce large specimen sizes required by engineering applications. Traditional design on MGs mainly relies on empirical rules, thus being limited in the accuracy and generality, in turn leading to slow development of MGs. Motivated by the issue, we hope to utilize the powerful learning capability of deep learning to mine the relationship between the metallic glass structure and the critical casting diameter (Dmax ) such that develop a universal and accurate tool to aid the experimental in-vestigation. Based on a reliable metallic glass dataset of 1121 unique alloys collected from literature, we introduce a periodic table representation (PTR) strategy to characterize the MG structure, which only needs the information of alloy composition such that can avoid feature engineering involving domain knowledge. Based on the image representation, we accordingly construct a convolutional neural network to effectively extract the structure feature from PTR, and then follow a fully connected neural network to realize the Dmax prediction. In addition, two data augmentation strategies are introduced to address the dependence of deep learning on big data, through which the model performance is indeed improved. In particular, the pairwise difference regression (PADRE) strategy exhibits better performance than the Mixup augmentation way, as PADRE targets the difference between sample pairs such that can to some extent drop the systematic error of experimental determination. The principal component analysis (PCA) analysis further confirms the ef-fectiveness of the PTR representation and the powerful capacity of CNN to extract structural information from PTR. Benefited from the technical advantages, our deep learning model achieves satisfactory perfor-mance with R2 of 0.822 for unseen samples in the independent test set, which outperforms two competitive models using traditional machine learning algorithms coupled with hand-selection features, further de-monstrating the advantage of our model in the universality and accuracy.(c) 2023 Published by Elsevier B.V.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] DBoTPM: A Deep Neural Network-Based Botnet Prediction Model
    Haq, Mohd Anul
    ELECTRONICS, 2023, 12 (05)
  • [22] A neural network-based prediction model in water monitoring networks
    Ji, Xiaohong
    Pan, Ying
    Jia, Guoqing
    Fang, Weidong
    WATER SUPPLY, 2021, 21 (05) : 2347 - 2356
  • [23] A neural network-based local model for prediction of geomagnetic disturbances
    Gleisner, H
    Lundstedt, H
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2001, 106 (A5) : 8425 - 8433
  • [24] A Model of Traffic Accident Prediction Based on Convolutional Neural Network
    Lu Wenqi
    Luo Dongyu
    Yan Menghua
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (ICITE), 2017, : 198 - 202
  • [25] Convolutional Neural Network-Based Regression Model for Distribution Data from X-Ray Radiographs of Metallic Foams
    Kammbach, Tristan E.
    Kamm, Paul H.
    Neu, Tillmann R.
    Garcia-Moreno, Francisco
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (24)
  • [26] Rupture risk prediction of cerebral aneurysms using a novel convolutional neural network-based deep learning model
    Yang, Hyeondong
    Cho, Kwang-Chun
    Kim, Jung-Jae
    Kim, Jae Ho
    Kim, Yong Bae
    Oh, Je Hoon
    JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2023, 15 (02) : 200 - +
  • [27] Development of a lightweight convolutional neural network-based visual model for sediment concentration prediction by incorporating the IoT concept
    Huang, Chengchia
    Chang, Che-Cheng
    Chang, Chiao-Ming
    Tsai, Ming-Han
    JOURNAL OF HYDROINFORMATICS, 2023, 25 (06) : 2660 - 2674
  • [28] Multi-Scale Convolutional Neural Network-Based Intra Prediction for Video Coding
    Wang, Yang
    Fan, Xiaopeng
    Liu, Shaohui
    Zhao, Debin
    Gao, Wen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (07) : 1803 - 1815
  • [29] Convolutional Neural Network-Based Prediction of Axial Length Using Color Fundus Photography
    Yang, Che-Ning
    Chen, Wei-Li
    Yeh, Hsu-Hang
    Chu, Hsiao-Sang
    Wu, Jo-Hsuan
    Hsieh, Yi-Ting
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2024, 13 (05):
  • [30] Convolutional neural network-based wind pressure prediction on low-rise buildings
    Huang, Youqin
    Wu, Huifan
    Fu, Jiyang
    Zhang, Honghao
    Li, Haisheng
    ENGINEERING STRUCTURES, 2024, 309