Convolutional neural network-based prediction of hardness in bulk metallic glasses with small data

被引:0
|
作者
Nam, Chunghee [1 ]
机构
[1] Hannam Univ, Dept Elect & Elect Engn, Daejeon 34430, South Korea
基金
新加坡国家研究基金会;
关键词
Bulk metallic glass; Deep learning; Vickers hardness; Convolutional neural network; Limited data; TEMPERATURE WEAR-RESISTANCE;
D O I
10.1016/j.jnoncrysol.2025.123451
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study applies deep learning to predict Vickers hardness in bulk metallic glasses (BMGs) using limited datasets, addressing key challenges in materials informatics. Leveraging a convolutional neural network (CNN) model based solely on compositional features, we bypass traditional feature selection. Trained on 418 BMG samples across 10 cross-validation subsets, the model achieved strong predictive performance, with a peak R2 score of 0.983 and RMSE of 55.814 in the CV3 subset, highlighting the CNN's ability to capture compositionproperty relationships. Validation on unseen compositions confirmed the model's robustness, closely matching experimental values. Additionally, a pseudo-ternary diagram for Zr-Al-Co alloys was constructed, visually mapping composition to hardness. This work underscores the viability of CNNs for small datasets, advancing data-driven methods for BMG hardness prediction and materials design.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Prediction of glass forming ability of bulk metallic glasses based on convolutional neural network
    Zhang, Ting
    Long, Zhilin
    Peng, Li
    Li, Zhuang
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2022, 595
  • [2] Exploring a general convolutional neural network-based prediction model for critical casting diameter of metallic glasses
    Hu, Jing
    Yang, Songran
    Mao, Jun
    Shi, Chaojie
    Wang, Guangchuan
    Liu, Yijing
    Pu, Xuemei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 947
  • [3] Artificial Neural Network Supported Prediction of Magnetic Properties of Bulk Metallic Glasses
    Nam, Chunghee
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2023, 33 (07): : 273 - 278
  • [4] Convolutional Neural Network-based Jaywalking Data Generation and Classification
    Park, Jaeseo
    Lee, Yunsoo
    Heo, Jun Ho
    Kang, Suk-Ju
    2019 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2019, : 132 - 133
  • [5] Convolutional neural network-based regression for depth prediction in digital holography
    Shimobaba, Tomoyoshi
    Kakue, Takashi
    Ito, Tomoyoshi
    2018 IEEE 27TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2018, : 1323 - 1326
  • [6] Cr-based bulk metallic glasses with ultrahigh hardness
    Si, J. J.
    Wang, T.
    Wu, Y. D.
    Cai, Y. H.
    Chen, X. H.
    Wang, W. Y.
    Liu, Z. K.
    Hui, X. D.
    APPLIED PHYSICS LETTERS, 2015, 106 (25)
  • [7] Convolutional neural network-based liquefaction prediction model and interpretability analysis
    Long, Xiao
    Sun, Rui
    Zheng, Tong
    Yantu Lixue/Rock and Soil Mechanics, 2024, 45 (09): : 2741 - 2753
  • [8] Convolutional Neural Network-Based Compound Fingerprint Prediction for Metabolite Annotation
    Gao, Shijinqiu
    Chau, Hoi Yan Katharine
    Wang, Kuijun
    Ao, Hongyu
    Varghese, Rency S.
    Ressom, Habtom W.
    METABOLITES, 2022, 12 (07)
  • [9] A Convolutional Neural Network-Based Stress Prediction Method for Airfoil Structures
    Jia, Wendi
    Chen, Quanlong
    AEROSPACE, 2024, 11 (12)