Projection theorems using effective dimension

被引:0
|
作者
Lutz, Neil [1 ]
Stull, D. M. [2 ]
机构
[1] Swarthmore Coll, Comp Sci Dept, 500 Coll Ave, Swarthmore, PA 19081 USA
[2] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Effective dimension; Kolmogorov complexity; Fractal geometry; PACKING DIMENSIONS; DEFINITION; BOX;
D O I
10.1016/j.ic.2024.105137
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we use the theory of computing to study fractal dimensions of projections in Euclidean spaces. A fundamental result in fractal geometry is Marstrand's projection theorem, which states that for every analytic set E, for almost every line L, the Hausdorff dimension of the orthogonal projection of E onto L is maximal. We use Kolmogorov complexity to give two new results on the Hausdorff and packing dimensions of orthogonal projections onto lines. The first shows that the conclusion of Marstrand's theorem holds whenever the Hausdorff and packing dimensions agree on the set E, even if E is not analytic. Our second result gives a lower bound on the packing dimension of projections of arbitrary sets. Finally, we give a new proof of Marstrand's theorem using the theory of computing. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Some new theorems on multivariate projection operators
    Sauku, Laszlo
    Vertesi, Peter
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2008, 61 (02): : 169 - 172
  • [42] Marstrand type projection theorems for normed spaces
    Balogh, Zoltan M.
    Iseli, Annina
    JOURNAL OF FRACTAL GEOMETRY, 2019, 6 (04) : 367 - 392
  • [43] Effective Hausdorff dimension
    Cámara, EM
    Classical and New Paradigms of Computation and Their Complexity Hierarchies, 2004, 23 : 171 - 186
  • [44] Effective Hausdorff dimension
    Reimann, J
    Stephan, F
    LOGIC COLLOQUIM 01, PROCEEDINGS, 2005, 20 : 369 - 385
  • [45] ALEXANDER AND MARKOV THEOREMS IN DIMENSION-4
    KAMADA, S
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 31 (01) : 64 - 67
  • [46] Mean dimension and Jaworski-type theorems
    Gutman, Yonatan
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 111 : 831 - 850
  • [47] PRODUCT THEOREMS IN DIMENSION THEORY .I.
    NAGATA, JI
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1967, 15 (07): : 439 - &
  • [48] Krull-Schmidt theorems in dimension 1
    Levy, LS
    Odenthal, CJ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (09) : 3391 - 3455
  • [49] Quantitative de Jong theorems in any dimension
    Doebler, Christian
    Peccati, Giovanni
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22 : 1 - 35
  • [50] ON DIMENSION THEOREMS OF THE VARIETIES OF SPECIAL DIVISORS ON A CURVE
    MARTENS, G
    MATHEMATISCHE ANNALEN, 1984, 267 (02) : 279 - 288