Projection theorems using effective dimension

被引:0
|
作者
Lutz, Neil [1 ]
Stull, D. M. [2 ]
机构
[1] Swarthmore Coll, Comp Sci Dept, 500 Coll Ave, Swarthmore, PA 19081 USA
[2] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Effective dimension; Kolmogorov complexity; Fractal geometry; PACKING DIMENSIONS; DEFINITION; BOX;
D O I
10.1016/j.ic.2024.105137
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we use the theory of computing to study fractal dimensions of projections in Euclidean spaces. A fundamental result in fractal geometry is Marstrand's projection theorem, which states that for every analytic set E, for almost every line L, the Hausdorff dimension of the orthogonal projection of E onto L is maximal. We use Kolmogorov complexity to give two new results on the Hausdorff and packing dimensions of orthogonal projections onto lines. The first shows that the conclusion of Marstrand's theorem holds whenever the Hausdorff and packing dimensions agree on the set E, even if E is not analytic. Our second result gives a lower bound on the packing dimension of projections of arbitrary sets. Finally, we give a new proof of Marstrand's theorem using the theory of computing. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] EFFECTIVE DIMENSION
    CROSSLEY, JN
    NERODE, A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (04): : A474 - A475
  • [22] Strong convergence theorems and a projection method using a balanced mapping in Hadamard spaces
    Kimura, Yasunori
    Ogihara, Tomoya
    FILOMAT, 2023, 37 (27) : 9287 - 9297
  • [23] THEOREMS ON DIMENSION OF CONVEX-SETS
    ECKHARDT, U
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 12 (01) : 63 - 76
  • [24] Intersection theorems under dimension constraints
    Ahlswede, R
    Aydinian, H
    Khachatrian, LH
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (03) : 483 - 519
  • [25] SOME THEOREMS ON THE DIMENSION OF FIBRE SPACES
    LIAO, SD
    AMERICAN JOURNAL OF MATHEMATICS, 1949, 71 (01) : 231 - 240
  • [26] THEOREMS BY VITALI AND MONTEL IN INFINITE DIMENSION
    COLOMBEA.JF
    LAZET, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (02): : 185 - &
  • [27] On multiwell Liouville theorems in higher dimension
    Jerrard, Robert L.
    Lorent, Andrew
    ADVANCES IN CALCULUS OF VARIATIONS, 2013, 6 (03) : 247 - 298
  • [28] Some mapping theorems for extensional dimension
    Levin, M
    Lewis, W
    ISRAEL JOURNAL OF MATHEMATICS, 2003, 133 (1) : 61 - 76
  • [29] On sum and product theorems for dimension Dind
    Chatyrko, VA
    Pasynkov, BA
    HOUSTON JOURNAL OF MATHEMATICS, 2002, 28 (01): : 119 - 131
  • [30] Some mapping theorems for extensional dimension
    Michael Levin
    Wayne Lewis
    Israel Journal of Mathematics, 2003, 133 : 61 - 76