Testing the missing at random assumption in generalized linear models in the presence of instrumental variables

被引:1
|
作者
Duan, Rui [1 ,6 ]
Liang, C. Jason [2 ]
Shaw, Pamela A. [3 ,4 ]
Tang, Cheng Yong [4 ]
Chen, Yong [5 ,7 ]
机构
[1] Harvard T H Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[2] NIAID, Rockville, MD USA
[3] Kaiser Permanente Washington Hlth Res Inst, Seattle, WA USA
[4] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA USA
[5] Temple Univ, Dept Stat Operat & Data Sci, Philadelphia, PA USA
[6] Harvard T H Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[7] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Hausman test; hypothesis testing; influence function; instrumental variable; missing not at random; semiparametric inference; EMPIRICAL LIKELIHOOD APPROACH; DENSITY-ESTIMATION; NONPARAMETRIC-ESTIMATION; SEMIPARAMETRIC ESTIMATION; ESTIMATING EQUATIONS; ASYMPTOTIC-BEHAVIOR; LONGITUDINAL DATA; ESTIMATORS; SELECTION; EFFICIENCY;
D O I
10.1111/sjos.12685
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Practical problems with missing data are common, and many methods have been developed concerning the validity and/or efficiency of statistical procedures. On a central focus, there have been longstanding interests on the mechanism governing data missingness, and correctly deciding the appropriate mechanism is crucially relevant for conducting proper practical investigations. In this paper, we present a new hypothesis testing approach for deciding between the conventional notions of missing at random and missing not at random in generalized linear models in the presence of instrumental variables. The foundational idea is to develop appropriate discrepancy measures between estimators whose properties significantly differ only when missing at random does not hold. We show that our testing approach achieves an objective data-oriented choice between missing at random or not. We demonstrate the feasibility, validity, and efficacy of the new test by theoretical analysis, simulation studies, and a real data analysis.
引用
收藏
页码:334 / 354
页数:21
相关论文
共 50 条
  • [1] Testing Missing at Random Using Instrumental Variables
    Breunig, Christoph
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2019, 37 (02) : 223 - 234
  • [2] Instrumental variables, bootstrapping, and generalized linear models
    Hardin, James W.
    Schmiediche, Henrik
    Carroll, Raymond J.
    [J]. STATA JOURNAL, 2003, 3 (04): : 351 - 360
  • [3] Testing parametric models in the presence of instrumental variables
    Holzmann, Hajo
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (06) : 629 - 636
  • [4] On testing the missing at random assumption
    Jaeger, Manfred
    [J]. MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 671 - 678
  • [5] Generalized instrumental inequalities: testing the instrumental variable independence assumption
    Kedagni, Desire
    Mourifie, Ismael
    [J]. BIOMETRIKA, 2020, 107 (03) : 661 - 675
  • [6] Use of instrumental variables in the analysis of generalized linear models in the presence of unmeasured confounding with applications to epidemiological research
    Johnston, K. M.
    Gustafson, P.
    Levy, A. R.
    Grootendorst, P.
    [J]. STATISTICS IN MEDICINE, 2008, 27 (09) : 1539 - 1556
  • [7] Model averaging for generalized linear models with missing at random covariates
    Cheng, Weili
    Li, Xiaorui
    Li, Xiaoxia
    Yan, Xiaodong
    [J]. STATISTICS, 2023, 57 (01) : 26 - 52
  • [8] Bayesian methods for generalized linear models with covariates missing at random
    Ibrahim, JG
    Chen, MH
    Lipsitz, SR
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2002, 30 (01): : 55 - 78
  • [9] Testing Based on Empirical Likelihood for Partially Linear Models with Instrumental Variables
    Zhao, Peixin
    [J]. ADVANCED DEVELOPMENT IN AUTOMATION, MATERIALS AND MANUFACTURING, 2014, 624 : 500 - 504
  • [10] Variance estimation for the instrumental variables approach to measurement error in generalized linear models
    Hardin, James W.
    Carroll, Raymond J.
    [J]. STATA JOURNAL, 2003, 3 (04): : 342 - 350