Testing Missing at Random Using Instrumental Variables

被引:14
|
作者
Breunig, Christoph [1 ]
机构
[1] Humboldt Univ, Spandauer Str 1, D-10178 Berlin, Germany
关键词
Consistent testing; Incomplete data; Instrumental variable; Missing-data mechanism; Nonparametric hypothesis testing; Selection model; Series estimation; NONPARAMETRIC-ESTIMATION; ASYMPTOTIC NORMALITY; CONVERGENCE-RATES; SERIES ESTIMATORS; MODEL; EXOGENEITY; SELECTION; PANEL;
D O I
10.1080/07350015.2017.1302879
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article proposes a test for missing at random (MAR). The MAR assumption is shown to be testable given instrumental variables which are independent of response given potential outcomes. A nonparametric testing procedure based on integrated squared distance is proposed. The statistic's asymptotic distribution under the MAR hypothesis is derived. In particular, our results can be applied to testing missing completely at random (MCAR). A Monte Carlo study examines finite sample performance of our test statistic. An empirical illustration analyzes the nonresponse mechanism in labor income questions.
引用
收藏
页码:223 / 234
页数:12
相关论文
共 50 条
  • [1] Testing the missing at random assumption in generalized linear models in the presence of instrumental variables
    Duan, Rui
    Liang, C. Jason
    Shaw, Pamela A.
    Tang, Cheng Yong
    Chen, Yong
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (01) : 334 - 354
  • [2] SEMIPARAMETRIC ESTIMATION WITH DATA MISSING NOT AT RANDOM USING AN INSTRUMENTAL VARIABLE
    Sun, BaoLuo
    Liu, Lan
    Miao, Wang
    Wirth, Kathleen
    Robins, James
    Tchetgen, Eric J. Tchetgen
    STATISTICA SINICA, 2018, 28 (04) : 1965 - 1983
  • [3] THE CLASSICAL PRINCIPLES OF TESTING USING INSTRUMENTAL VARIABLES ESTIMATES
    MAGDALINOS, MA
    JOURNAL OF ECONOMETRICS, 1990, 44 (03) : 241 - 279
  • [4] Instrumental variables estimation with partially missing instruments
    Mogstad, M.
    Wiswall, M.
    ECONOMICS LETTERS, 2012, 114 (02) : 186 - 189
  • [5] Testing the Expectations Hypothesis of the Term Structure Using Instrumental Variables
    Driffill, John
    Psaradakis, Zacharias
    Sola, Martin
    INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 1998, 3 (04) : 321 - 325
  • [6] Statistical Analysis for Multisite Trials Using Instrumental Variables With Random Coefficients
    Raudenbush, Stephen W.
    Reardon, Sean F.
    Nomi, Takako
    JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS, 2012, 5 (03) : 303 - 332
  • [7] Instrumental variables and GMM: Estimation and testing
    Baum, Christopher F.
    Schaffer, Mark E.
    Stillman, Steven
    STATA JOURNAL, 2003, 3 (01): : 1 - 31
  • [8] On testing the missing at random assumption
    Jaeger, Manfred
    MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 671 - 678
  • [9] Random effects estimators with many instrumental variables
    Chamberlain, G
    Imbens, G
    ECONOMETRICA, 2004, 72 (01) : 295 - 306
  • [10] Imputation of continuous variables missing at random using the method of simulated scores
    Calzolari, G
    Neri, L
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 389 - 394