Testing the missing at random assumption in generalized linear models in the presence of instrumental variables

被引:1
|
作者
Duan, Rui [1 ,6 ]
Liang, C. Jason [2 ]
Shaw, Pamela A. [3 ,4 ]
Tang, Cheng Yong [4 ]
Chen, Yong [5 ,7 ]
机构
[1] Harvard T H Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[2] NIAID, Rockville, MD USA
[3] Kaiser Permanente Washington Hlth Res Inst, Seattle, WA USA
[4] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA USA
[5] Temple Univ, Dept Stat Operat & Data Sci, Philadelphia, PA USA
[6] Harvard T H Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[7] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Hausman test; hypothesis testing; influence function; instrumental variable; missing not at random; semiparametric inference; EMPIRICAL LIKELIHOOD APPROACH; DENSITY-ESTIMATION; NONPARAMETRIC-ESTIMATION; SEMIPARAMETRIC ESTIMATION; ESTIMATING EQUATIONS; ASYMPTOTIC-BEHAVIOR; LONGITUDINAL DATA; ESTIMATORS; SELECTION; EFFICIENCY;
D O I
10.1111/sjos.12685
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Practical problems with missing data are common, and many methods have been developed concerning the validity and/or efficiency of statistical procedures. On a central focus, there have been longstanding interests on the mechanism governing data missingness, and correctly deciding the appropriate mechanism is crucially relevant for conducting proper practical investigations. In this paper, we present a new hypothesis testing approach for deciding between the conventional notions of missing at random and missing not at random in generalized linear models in the presence of instrumental variables. The foundational idea is to develop appropriate discrepancy measures between estimators whose properties significantly differ only when missing at random does not hold. We show that our testing approach achieves an objective data-oriented choice between missing at random or not. We demonstrate the feasibility, validity, and efficacy of the new test by theoretical analysis, simulation studies, and a real data analysis.
引用
收藏
页码:334 / 354
页数:21
相关论文
共 50 条
  • [21] GENERALIZED INSTRUMENTAL VARIABLES ESTIMATION OF AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTIC MODELS
    RICH, RW
    RAYMOND, J
    BUTLER, JS
    [J]. ECONOMICS LETTERS, 1991, 35 (02) : 179 - 185
  • [22] Missing covariate data in generalized linear mixed models with distribution-free random effects
    Liu, Li
    Xiang, Liming
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 134 : 1 - 16
  • [23] Local linear regression for generalized linear models with missing data
    Wang, CY
    Wang, SJ
    Gutierrez, RG
    Carroll, RJ
    [J]. ANNALS OF STATISTICS, 1998, 26 (03): : 1028 - 1050
  • [24] Identification of Fractional Linear Dynamical Systems with Autocorrelated Errors in Variables by Generalized Instrumental Variables
    Ivanov, Dmitriy V.
    Sandler, Ilya L.
    Kozlov, Evgeniy V.
    [J]. IFAC PAPERSONLINE, 2018, 51 (32): : 580 - 584
  • [25] LINEAR INVERSE PROBLEMS FOR GENERALIZED RANDOM-VARIABLES
    LEHTINEN, MS
    PAIVARINTA, L
    SOMERSALO, E
    [J]. INVERSE PROBLEMS, 1989, 5 (04) : 599 - 612
  • [26] Linear combination and reliability of generalized logistic random variables
    Ozelim, Luan C. de S. M.
    Rathie, Pushpa N.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (03): : 722 - 733
  • [27] Optimizing Generalized Linear Models with Billions of Variables
    Liang, Yanbo
    Yu, Yongyang
    Tang, Mingjie
    Li, Chaozhuo
    Yang, Weiqing
    Xu, Weichen
    Zheng, Ruifeng
    [J]. CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 2155 - 2163
  • [28] Enhanced routines for instrumental variables/generalized method of moments estimation and testing
    Baum, Christopher F.
    Schaffer, Mark E.
    Stillman, Steven
    [J]. STATA JOURNAL, 2007, 7 (04): : 465 - 506
  • [29] A GENERALIZED-METHOD OF INSTRUMENTAL VARIABLES IN THE PROBLEMS OF IDENTIFICATION OF LINEAR OBJECTS
    TSYPKIN, JZ
    POZNIAK, AS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1989, 306 (05): : 1068 - 1072
  • [30] Identification of causal effects in linear models: beyond instrumental variables
    Stanghellini, Elena
    Pakpahan, Eduwin
    [J]. TEST, 2015, 24 (03) : 489 - 509