Cramer-type moderate deviation of normal approximation for unbounded exchangeable pairs

被引:2
|
作者
Zhang, Zhuo-Song [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
基金
澳大利亚研究理事会;
关键词
Stein?s method; exchangeable pair approach; Cram?r-type moderate deviation; sums of local statistics; general Curie-Weiss model; STEINS METHOD; NONNORMAL APPROXIMATION; POISSON APPROXIMATION; RATES; CONVERGENCE; THEOREMS; BOUNDS; MODEL; SUMS; CLT;
D O I
10.3150/21-BEJ1457
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In Stein's method, the exchangeable pair approach is commonly used to estimate the approximation errors in normal approximation. In this paper, we establish a Cramer-type moderate deviation theorem of normal approxi-mation for unbounded exchangeable pairs. As applications, Cramer-type moderate deviation theorems for the sums of local statistics and general Curie-Weiss model are obtained.
引用
收藏
页码:274 / 299
页数:26
相关论文
共 26 条
  • [11] Central limit theorem and self-normalized Cramer-type moderate deviation for Euler-Maruyama scheme
    Lu, Jianya
    Tan, Yuzhen
    Xu, Lihu
    BERNOULLI, 2022, 28 (02) : 937 - 964
  • [12] SELF-NORMALIZED CRAMER-TYPE MODERATE DEVIATIONS UNDER DEPENDENCE
    Chen, Xiaohong
    Shao, Qi-Man
    Wu, Wei Biao
    Xu, Lihu
    ANNALS OF STATISTICS, 2016, 44 (04): : 1593 - 1617
  • [13] FURTHER REFINEMENT OF SELF-NORMALIZED CRAMER-TYPE MODERATE DEVIATIONS
    Sang, Hailin
    Ge, Lin
    ESAIM-PROBABILITY AND STATISTICS, 2017, 21 : 201 - 219
  • [14] Cramer-type moderate deviations for stationary sequences of bounded random variables
    Fan, Xiequan
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (05) : 463 - 477
  • [15] Multivariate normal approximation using exchangeable pairs
    Chatterjee, Sourav
    Meckes, Elizabeth
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2008, 4 : 257 - 283
  • [16] Self-normalized Cramer-type Moderate Deviations for Functionals of Markov Chain
    Feng, Xin-wei
    Shao, Qi-Man
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (02): : 294 - 313
  • [17] Self-Normalized Cramer-Type Moderate Deviations for Explosive Vasicek Model
    Jiang, Hui
    Pan, Yajuan
    Wei, Xiao
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (01) : 228 - 250
  • [18] REFINED CRAMER-TYPE MODERATE DEVIATION THEOREMS FOR GENERAL SELF-NORMALIZED SUMS WITH APPLICATIONS TO DEPENDENT RANDOM VARIABLES AND WINSORIZED MEAN
    Gao, Lan
    Shao, Qi-Man
    Shi, Jiasheng
    ANNALS OF STATISTICS, 2022, 50 (02): : 673 - 697
  • [19] Normal approximation via non-linear exchangeable pairs
    Doebler, Christian
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 : 167 - 224
  • [20] CRAMER-TYPE MODERATE DEVIATIONS FOR STUDENTIZED TWO-SAMPLE U-STATISTICS WITH APPLICATIONS
    Chang, Jinyuan
    Shao, Qi-Man
    Zhou, Wen-Xin
    ANNALS OF STATISTICS, 2016, 44 (05): : 1931 - 1956