Cramer-type moderate deviation of normal approximation for unbounded exchangeable pairs

被引:2
|
作者
Zhang, Zhuo-Song [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
基金
澳大利亚研究理事会;
关键词
Stein?s method; exchangeable pair approach; Cram?r-type moderate deviation; sums of local statistics; general Curie-Weiss model; STEINS METHOD; NONNORMAL APPROXIMATION; POISSON APPROXIMATION; RATES; CONVERGENCE; THEOREMS; BOUNDS; MODEL; SUMS; CLT;
D O I
10.3150/21-BEJ1457
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In Stein's method, the exchangeable pair approach is commonly used to estimate the approximation errors in normal approximation. In this paper, we establish a Cramer-type moderate deviation theorem of normal approxi-mation for unbounded exchangeable pairs. As applications, Cramer-type moderate deviation theorems for the sums of local statistics and general Curie-Weiss model are obtained.
引用
收藏
页码:274 / 299
页数:26
相关论文
共 26 条
  • [1] CRAMER-TYPE MODERATE DEVIATION THEOREMS FOR NONNORMAL APPROXIMATION
    Shao, Qi-Man
    Zhang, Mengchen
    Zhang, Zhuo-Song
    ANNALS OF APPLIED PROBABILITY, 2021, 31 (01): : 247 - 283
  • [2] A refined Cramer-type moderate deviation for sums of local statistics
    Fang, Xiao
    Luo, Li
    Shao, Qi-Man
    BERNOULLI, 2020, 26 (03) : 2319 - 2352
  • [3] Cramer-type moderate deviation for quadratic forms with a fast rate
    Fang, Xiao
    Liu, Song-Hao
    Shao, Qi-Man
    BERNOULLI, 2023, 29 (03) : 2466 - 2491
  • [4] Cramer-Type Moderate Deviation for Studentized Compound Poisson Sum
    Jing, Bing-Yi
    Wang, Qiying
    Zhou, Wang
    JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (04) : 1556 - 1570
  • [5] MODERATE AND CRAMER-TYPE LARGE DEVIATION THEOREMS FOR M-ESTIMATORS
    JURECKOVA, J
    KALLENBERG, WCM
    VERAVERBEKE, N
    STATISTICS & PROBABILITY LETTERS, 1988, 6 (03) : 191 - 199
  • [6] Deviation inequalities and Cramer-type moderate deviations for the explosive autoregressive process
    Jiang, Hui
    Wan, Yilong
    Yang, Guangyu
    BERNOULLI, 2022, 28 (04) : 2634 - 2662
  • [7] On the self-normalized Cramer-type large deviation
    Robinson, J
    Wang, QY
    JOURNAL OF THEORETICAL PROBABILITY, 2005, 18 (04) : 891 - 909
  • [8] Cramer-type moderate deviations for intermediate trimmed means
    Gribkova, Nadezhda
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (23) : 11918 - 11932
  • [9] BERRY-ESSEEN BOUNDS OF NORMAL AND NONNORMAL APPROXIMATION FOR UNBOUNDED EXCHANGEABLE PAIRS
    Shao, Qi-Man
    Zhang, Zhuo-Song
    ANNALS OF PROBABILITY, 2019, 47 (01): : 61 - 108
  • [10] CRAMER-TYPE MODERATE DEVIATION FOR THE MAXIMUM OF THE PERIODOGRAM WITH APPLICATION TO SIMULTANEOUS TESTS IN GENE EXPRESSION TIME SERIES
    Liu, Weidong
    Shao, Qi-Man
    ANNALS OF STATISTICS, 2010, 38 (03): : 1913 - 1935