BERRY-ESSEEN BOUNDS OF NORMAL AND NONNORMAL APPROXIMATION FOR UNBOUNDED EXCHANGEABLE PAIRS

被引:18
|
作者
Shao, Qi-Man [1 ]
Zhang, Zhuo-Song [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
来源
ANNALS OF PROBABILITY | 2019年 / 47卷 / 01期
关键词
Stein's method; exchangeable pairs; Berry-Esseen bound; quadratic forms; simple random sampling; general Curie-Weiss model; mean field Heisenberg model; monochromatic edges; MULTIVARIATE NORMAL APPROXIMATION; STEINS METHOD; CLT;
D O I
10.1214/18-AOP1255
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An exchangeable pair approach is commonly taken in the normal and nonnormal approximation using Stein's method. It has been successfully used to identify the limiting distribution and provide an error of approximation. However, when the difference of the exchangeable pair is not bounded by a small deterministic constant, the error bound is often not optimal. In this paper, using the exchangeable pair approach of Stein's method, a new Berry-Esseen bound for an arbitrary random variable is established without a bound on the difference of the exchangeable pair. An optimal convergence rate for normal and nonnormal approximation is achieved when the result is applied to various examples including the quadratic forms, general Curie-Weiss model, mean field Heisenberg model and colored graph model.
引用
收藏
页码:61 / 108
页数:48
相关论文
共 50 条
  • [1] Berry-Esseen Inequality for Unbounded Exchangeable Pairs
    Chen, Yanchu
    Shao, Qi-Man
    [J]. PROBABILITY APPROXIMATIONS AND BEYOND, 2012, 205 : 13 - 30
  • [2] Non-uniform Berry-Esseen bound by unbounded exchangeable pairs approach
    Da-li Liu
    Zheng Li
    Han-chao Wang
    Zeng-jing Chen
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2021, 36 : 256 - 268
  • [3] Non-uniform Berry-Esseen bound by unbounded exchangeable pairs approach
    LIU Da-li
    LI Zheng
    WANG Han-chao
    CHEN Zeng-jing
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2021, 36 (02) : 256 - 268
  • [4] Non-uniform Berry-Esseen bound by unbounded exchangeable pairs approach
    Liu Da-li
    Li Zheng
    Wang Han-chao
    Chen Zeng-jing
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2021, 36 (02): : 256 - 268
  • [5] Berry-Esseen Bounds and Diophantine Approximation
    Berkes, I.
    Borda, B.
    [J]. ANALYSIS MATHEMATICA, 2018, 44 (02) : 149 - 161
  • [6] On Berry-Esseen bounds of summability transforms
    Fridy, JA
    Goonatilake, RA
    Khan, MK
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) : 273 - 282
  • [7] A NOTE ON THE BERRY-ESSEEN BOUNDS FOR ρ-MIXING
    Lu, C.
    Yu, W.
    Ji, R. L.
    Zhou, H. L.
    Wang, X. J.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (03) : 415 - 433
  • [8] Berry-Esseen bounds for estimating undirected graphs
    Wasserman, Larry
    Kolar, Mladen
    Rinaldo, Alessandro
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 1188 - 1224
  • [9] Anticoncentration and Berry-Esseen bounds for random tensors
    Dodos, Pandelis
    Tyros, Konstantinos
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2023, 187 (1-2) : 317 - 384
  • [10] Berry-Esseen bounds for typical weighted sums
    Bobkov, S. G.
    Chistyakov, G. P.
    Goetze, F.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23