Functional brain network based on improved ensemble empirical mode decomposition of EEG for anxiety analysis and detection

被引:0
|
作者
Zhang, Bingtao [1 ,2 ]
Wang, Chonghui [1 ]
Yan, Guanghui [1 ]
Su, Yun [3 ]
Tao, Lei [4 ]
Cai, Hanshu [5 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Elect & Informat Engn, Lanzhou, Peoples R China
[2] Lanzhou Jiaotong Univ, Key Lab Optotechnol & Intelligent Control, Minist Educ, Lanzhou, Peoples R China
[3] Northwest Normal Univ, Coll Comp Sci & Engn, Lanzhou 730070, Peoples R China
[4] Shaanxi Univ Sci & Technol, Sch Elect Informat & Artificial Intelligence, Xian, Peoples R China
[5] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Functional brain network; EEG; Anxiety; Improved ensemble empirical mode; decomposition; CONNECTIVITY; DISORDERS; DYNAMICS; EMD;
D O I
10.1016/j.bspc.2024.106030
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Most anxiety studies are based on the features of isolated electroencephalography (EEG) electrode, ignoring that the essence of EEG is the signals overlap from different neurons. Therefore, it's difficult to find abnormal topological alters of the brain from independent neuron. To this end, this paper proposes an anxitey analysis and detection framework of brain function network (BFN) based on improved Ensemble empirical mode decomposition (EEMD). Additional adaptive white noise is adopted to solve the pattern aliasing problem, and several intrinsic mode functions (IMF) for simulating independent neuron signals are obtained. Binary BFN is constructed on different IMF based on phase lag index (PLI) and proportional threshold strategy. Then complex network method is used to analyze the topology alters and attributes of BFN, and explore the potential biomarkers of anxiety detection. In addition, to evaluate the effectiveness of these potential biomarkers for anxiety detection, support vector machine (SVM) classifier is used as an evaluation tool and highest detection accuracy of 92.38% was obtained. Meanwhile, the analysis results show that the adaptive amplitude white noise can affect all extreme points, and improved EEMD can more effectively decompose EEG signals. Functional synchrony altered significantly in the frontal, temporal and central region of the left brain. Our research findings also show that the BFN of anxiety patients shows a tendency of randomization.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Motor Imagery EEG Detection by Empirical Mode Decomposition
    Guo Xiaojing
    Wu Xiaopei
    Zhang Dexiang
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 2619 - 2622
  • [22] Investigation of Epileptic EEG Data Using Ensemble Empirical Mode Decomposition
    Cura, Ozlem Karabiber
    Akan, Aydin
    2017 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO), 2017,
  • [23] Classification of Epileptic EEG Data by Using Ensemble Empirical Mode Decomposition
    Cura, Ozlem Karabiber
    Atli, Sibel Kocaaslan
    Sadighzadeh, Reza
    Akan, Aydin
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [24] An Improved Signal Processing Approach Based on Analysis Mode Decomposition and Empirical Mode Decomposition
    Chen, Zhongzhe
    Liu, Baqiao
    Yan, Xiaogang
    Yang, Hongquan
    ENERGIES, 2019, 12 (16)
  • [25] Quasi-Brain-Death EEG Data Analysis by Empirical Mode Decomposition
    Saito, Yuki
    Tanaka, Toshihisa
    Can, Jianting
    Mandic, Danilo P.
    ADVANCES IN COGNITIVE NEURODYNAMICS, PROCEEDINGS, 2008, : 837 - +
  • [26] Improved Ensemble Empirical Mode Decomposition Method and Its Simulation
    Lin, Jinshan
    ADVANCES IN INTELLIGENT SYSTEMS, 2012, 138 : 109 - 115
  • [27] Analysis of Acoustic Signal Based on Modified Ensemble Empirical Mode Decomposition
    Kwon, Sundeok
    Cho, Sangjin
    TRANSACTIONS ON ENGINEERING TECHNOLOGIES: SPECIAL ISSUE OF THE WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE 2013, 2014, : 377 - 386
  • [28] EEG Seizure Prediction Based on Empirical Mode Decomposition and Convolutional Neural Network
    Yan, Jianzhuo
    Li, Jinnan
    Xu, Hongxia
    Yu, Yongchuan
    Pan, Lexin
    Cheng, Xuerui
    Tan, Shaofeng
    BRAIN INFORMATICS, BI 2021, 2021, 12960 : 463 - 473
  • [29] A Deep Neural Network for Working Memory Load Prediction from EEG Ensemble Empirical Mode Decomposition
    Sridhar, Sriniketan
    Romney, Anibal
    Manian, Vidya
    INFORMATION, 2023, 14 (09)
  • [30] Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition
    Georgoulas, George
    Loutas, Theodore
    Stylios, Chrysostomos D.
    Kostopoulos, Vassilis
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 41 (1-2) : 510 - 525