EEG Seizure Prediction Based on Empirical Mode Decomposition and Convolutional Neural Network

被引:2
|
作者
Yan, Jianzhuo [1 ,2 ]
Li, Jinnan [1 ,2 ]
Xu, Hongxia [1 ,2 ]
Yu, Yongchuan [1 ,2 ]
Pan, Lexin [3 ]
Cheng, Xuerui [4 ]
Tan, Shaofeng [5 ,6 ,7 ]
机构
[1] Beijing Univ Technol, Beijing, Peoples R China
[2] Minist Educ, Engn Res Ctr Digital Community, Beijing, Peoples R China
[3] Beijing Inst Technol, Sch Mechatron Engn, Beijing, Peoples R China
[4] Mt Pisgah Christian Sch, Johns Creek, GA USA
[5] Beijing Univ Technol, Join Lab Digital Hlth, Beijing, Peoples R China
[6] Beijing Pinggu Hosp, Beijing, Peoples R China
[7] Beijing Pinggu Hosp, Informat Ctr, Beijing, Peoples R China
来源
BRAIN INFORMATICS, BI 2021 | 2021年 / 12960卷
关键词
EEG; Epilepsy; Empirical Mode Decomposition; Convolutional neural network; CLASSIFICATION; EPILEPSY;
D O I
10.1007/978-3-030-86993-9_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Epilepsy is a common neurological disease characterized by recurrent seizures. Electroencephalography (EEG), which records neural activity, is commonly used to diagnose epilepsy. This paper proposes an Empirical Mode Decomposition (EMD) and Deep Convolutional Neural Network epileptic seizure prediction method. First, the original EEG signals are segmented using 30s sliding windows, and the segmented EEG signal is decomposed into Intrinsic Mode Functions (IMF) and residuals. Then, the entropy features which can better express the signal are extracted from the decomposed components. Finally, a deep convolutional neural network is used to construct the epileptic seizure prediction model. This experiment was conducted on the CHB-MIT Scalp EEG dataset to evaluate the performance of our proposed EMD-CNN epileptic EEG seizure detection model. The experimental results show that, compared with some previous EEG classification models, this model is helpful to improving the accuracy of epileptic seizure prediction.
引用
收藏
页码:463 / 473
页数:11
相关论文
共 50 条
  • [1] Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
    Madanu, Ravichandra
    Rahman, Farhan
    Abbod, Maysam F.
    Fan, Shou-Zen
    Shieh, Jiann-Shing
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 5047 - 5068
  • [2] Soil Temperature Prediction Using Convolutional Neural Network Based on Ensemble Empirical Mode Decomposition
    Hao, Huibowen
    Yu, Fanhua
    Li, Qingliang
    [J]. IEEE ACCESS, 2021, 9 : 4084 - 4096
  • [3] Epileptic seizure prediction based on local mean decomposition and deep convolutional neural network
    Yu, Zuyi
    Nie, Weiwei
    Zhou, Weidong
    Xu, Fangzhou
    Yuan, Shasha
    Leng, Yan
    Yuan, Qi
    [J]. JOURNAL OF SUPERCOMPUTING, 2020, 76 (05): : 3462 - 3476
  • [4] Epileptic seizure prediction based on local mean decomposition and deep convolutional neural network
    Zuyi Yu
    Weiwei Nie
    Weidong Zhou
    Fangzhou Xu
    Shasha Yuan
    Yan Leng
    Qi Yuan
    [J]. The Journal of Supercomputing, 2020, 76 : 3462 - 3476
  • [5] Empirical mode decomposition and convolutional neural network-based approach for diagnosing psychotic disorders from eeg signals
    Zulfikar, Aslan
    Mehmet, Akin
    [J]. APPLIED INTELLIGENCE, 2022, 52 (11) : 12103 - 12115
  • [6] Empirical mode decomposition and convolutional neural network-based approach for diagnosing psychotic disorders from eeg signals
    Aslan Zülfikar
    Akin Mehmet
    [J]. Applied Intelligence, 2022, 52 : 12103 - 12115
  • [7] Automatic Epileptic Seizure Detection based on Empirical Mode Decomposition and Deep Neural Network
    Daoud, Hisham G.
    Abdelhameed, Ahmed M.
    Bayoumi, Magdy
    [J]. 2018 IEEE 14TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA 2018), 2018, : 182 - 186
  • [8] Fault Diagnosis for Rotating Machinery Based on Convolutional Neural Network and Empirical Mode Decomposition
    Xie, Yuan
    Zhang, Tao
    [J]. SHOCK AND VIBRATION, 2017, 2017
  • [9] Motor imagery EEG recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network
    Tang, Xianlun
    Li, Wei
    Li, Xingchen
    Ma, Weichang
    Dang, Xiaoyuan
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2020, 149
  • [10] Empirical Mode Decomposition In Epileptic Seizure Prediction
    Tafreshi, Azadeh Kamali
    Nasrabadi, Ali M.
    Omidvarnia, Amir H.
    [J]. ISSPIT: 8TH IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2008, : 275 - 280