ASYMPTOTIC STABILITY OF SOLITARY WAVES OF THE 3D QUADRATIC ZAKHAROV-KUZNETSOV EQUATION

被引:3
|
作者
Farah, Luiz Gustavo [1 ]
Holmer, Justin [2 ]
Roudenko, Svetlana [3 ]
Yang, Kai [4 ,5 ]
机构
[1] Univ Fed Minas Gerais UFMG, Dept Math, Belo Horizonte, Brazil
[2] Brown Univ, Dept Math, Providence, RI USA
[3] Florida Int Univ, Dept Math & Statist, Miami, FL USA
[4] Chongqing Univ, Key Lab Nonlinear Anal & Applicat, Minist Educ, Chongqing 401331, Peoples R China
[5] Chongqing Univ, Coll Math & Statist, Chongqing 401331, Peoples R China
关键词
CAUCHY-PROBLEM; SOLITONS;
D O I
10.1353/ajm.2023.a913295
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the quadratic Zakharov-Kuznetsov equation partial differential tu+ partial differential x increment u+ partial differential xu2 = 0 on R3. A solitary wave solution is given by Q(x - t, y, z), where Q is the ground state solution to -Q + increment Q + Q(2) = 0. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to Q in the energy space, evolves to a solution that, as t -> infinity, converges to a rescaling and shift of Q(x - t, y, z) in L2 in a rightward shifting region x > delta t - tan theta y2 + z2 for 0 < theta <pi 3 - delta.
引用
收藏
页码:1695 / 1775
页数:82
相关论文
共 50 条