Uniqueness results for Zakharov-Kuznetsov equation

被引:12
|
作者
Cossetti, Lucrezia [1 ]
Fanelli, Luca [2 ]
Linares, Felipe [3 ]
机构
[1] BCAM, Bilbao, Spain
[2] Sapienza Univ Roma, Dipartimento Matemat, Rome, Italy
[3] IMPA, Rio De Janeiro, Brazil
关键词
Dispersive equations; unique continuation property; UNCERTAINTY PRINCIPLE; WELL-POSEDNESS; CAUCHY-PROBLEM; CONTINUATION; SUPPORT; DECAY;
D O I
10.1080/03605302.2019.1581803
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study uniqueness properties of solutions to the Zakharov-Kuznetsov equation of plasma physic. Given two sufficiently regular solutions u(1), u(2), we prove that, if decays fast enough at two distinct times, then u(1) = u(2.)
引用
收藏
页码:504 / 544
页数:41
相关论文
共 50 条
  • [1] On uniqueness properties of solutions of the Zakharov-Kuznetsov equation
    Bustamante, Eddye
    Isaza, Pedro
    Mejia, Jorge
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (11) : 2529 - 2549
  • [2] ON THE PERIODIC ZAKHAROV-KUZNETSOV EQUATION
    Linares, Felipe
    Panthee, Mahendra
    Robert, Tristan
    Tzvetkov, Nikolay
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (06) : 3521 - 3533
  • [3] THE PAINLEVE ANALYSIS OF THE ZAKHAROV-KUZNETSOV EQUATION
    SHIVAMOGGI, BK
    PHYSICA SCRIPTA, 1990, 42 (06): : 641 - 642
  • [4] ANALYTIC ASPECTS OF THE ZAKHAROV-KUZNETSOV EQUATION
    SHIVAMOGGI, BK
    ROLLINS, DK
    FANJUL, R
    PHYSICA SCRIPTA, 1993, 47 (01): : 15 - 17
  • [5] Observability of the Linear Zakharov-Kuznetsov Equation
    Capistrano-Filho, Roberto de A.
    Komornik, Vilmos
    Pazoto, Ademir F.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2025, 91 (02):
  • [6] Well-posedness results for the modified Zakharov-Kuznetsov equation
    Biagioni, HA
    Linares, F
    NONLINEAR EQUATIONS: METHODS, MODELS AND APPLICATIONS, 2003, 54 : 181 - 189
  • [7] On the support of solutions to the Zakharov-Kuznetsov equation
    Bustamante, Eddye
    Isaza, Pedro
    Mejia, Jorge
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (10) : 2728 - 2736
  • [8] The Cauchy problem for the Zakharov-Kuznetsov equation
    Faminskii, AV
    DIFFERENTIAL EQUATIONS, 1995, 31 (06) : 1002 - 1012
  • [9] NONCLASSICAL ANALYSIS FOR THE ZAKHAROV-KUZNETSOV EQUATION
    CHANGZHENG, Q
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (01) : 99 - 108
  • [10] Modified method of simplest equation for obtaining exact solutions of the Zakharov-Kuznetsov equation, the modified Zakharov-Kuznetsov equation, and their generalized forms
    Yu, Jianping
    Wang, Deng-Shan
    Sun, Yongli
    Wu, Suping
    NONLINEAR DYNAMICS, 2016, 85 (04) : 2449 - 2465