DIAGNOSIS OF CLINICAL SIGNIFICANT PROSTATE CANCER ON BIPARAMETRIC MRI USING ZONE-SPECIFIC RADIOMIC FEATURES

被引:0
|
作者
Mylona, Eugenia [1 ]
Zaridis, Dimitrios [1 ]
Tachos, Nikolaos [1 ]
Tsiknakis, Manolis [2 ]
Marias, Kostas [2 ]
Fotiadis, Dimitrios I. [1 ,3 ]
机构
[1] FORTH BRI, Dept Biomed Res, Ioannina, Greece
[2] FORTH ICS, Computat Biomed Lab, Iraklion, Greece
[3] Univ Ioannina, Unit Med Technol & Intelligent Informat Syst, Ioannina, Greece
关键词
radiomics; machine learning; prostate cancer characterization; medical imaging; classification; BIOPSY; PATHOLOGY;
D O I
10.1109/ISBI53787.2023.10230613
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantitative assessment of MRI, by means of radiomic analyses, is an emerging approach for prostate cancer (PCa) detection and characterization. Typically, radiomic features are extracted from the lesions, despite inherent uncertainties surrounding PCa segmentation. The aim of the study was to assess the usefulness of mpMRI-based radiomic models, originating from distinct anatomical regions of the prostate for non-invasive characterization of clinically significant PCa and compare them with lesion-derived radiomic models. Different classification tasks were formulated for each anatomical region (whole gland, peripheral zone, transition zone) and the corresponding lesions. For each task, four sets of radiomic features were considered (T2w, DWI, ADC, and their combination), and four classification algorithms (LASSO, RF, SVM, XGB) were implemented. Nested cross-validation was applied for model development, feature selection, hyperparameter optimization, and performance assessment. Whole-region RF radiomic models, with a maximum AUC of 0.84, outperformed the corresponding tumor-specific radiomic models (maximum AUC=0.75).
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Rationale for adopting a combination of monoparametric MRI with the prostate-specific antigen in detecting clinically significant prostate cancer: comparison with standard biparametric and multiparametric MRI
    Park, Seung Hyun
    Choi, Moon Hyung
    Lee, Young Joon
    Jung, Seung Eun
    BRITISH JOURNAL OF RADIOLOGY, 2024, 97 (1163):
  • [22] Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis
    Xiao Feng
    Xin Chen
    Peng Peng
    He Zhou
    Yi Hong
    Chunxia Zhu
    Libing Lu
    Siyu Xie
    Sijun Zhang
    Liling Long
    BMC Urology, 24
  • [23] Comparison between biparametric and multiparametric MRI diagnosis strategy for prostate cancer in the peripheral zone using PI-RADS version 2.1
    Jiahui Zhang
    Lili Xu
    Gumuyang Zhang
    Xiaoxiao Zhang
    Xin Bai
    Zhigang Ji
    Yu Xiao
    Hao Sun
    Zhengyu Jin
    Abdominal Radiology, 2022, 47 : 2905 - 2916
  • [24] Comparison between biparametric and multiparametric MRI diagnosis strategy for prostate cancer in the peripheral zone using PI-RADS version 2.1
    Zhang, Jiahui
    Xu, Lili
    Zhang, Gumuyang
    Zhang, Xiaoxiao
    Bai, Xin
    Ji, Zhigang
    Xiao, Yu
    Sun, Hao
    Jin, Zhengyu
    ABDOMINAL RADIOLOGY, 2022, 47 (08) : 2905 - 2916
  • [25] Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis
    Feng, Xiao
    Chen, Xin
    Peng, Peng
    Zhou, He
    Hong, Yi
    Zhu, Chunxia
    Lu, Libing
    Xie, Siyu
    Zhang, Sijun
    Long, Liling
    BMC UROLOGY, 2024, 24 (01)
  • [26] DIAGNOSTIC ACCURACY OF ADC VALUE ON BIPARAMETRIC MRI FOR DETECTING CLINICALLY SIGNIFICANT PROSTATE CANCER
    Park, Jih Hoon
    Ku, Ja Yoon
    Ha, Hong Koo
    JOURNAL OF UROLOGY, 2021, 206 : E79 - E80
  • [27] Reduction of false positives using zone-specific prostate-specific antigen density for prostate MRI-based biopsy decision strategies
    Hamm, Charlie A.
    Baumgaertner, Georg L.
    Padhani, Anwar R.
    Froboese, Konrad P.
    Draeger, Franziska
    Beetz, Nick L.
    Savic, Lynn J.
    Posch, Helena
    Lenk, Julian
    Schallenberg, Simon
    Maxeiner, Andreas
    Cash, Hannes
    Guenzel, Karsten
    Hamm, Bernd
    Asbach, Patrick
    Penzkofer, Tobias
    EUROPEAN RADIOLOGY, 2024, 34 (10) : 6229 - 6240
  • [28] Detection of Clinically Significant Prostate Cancer by Using Abbreviated Biparametric Prostate MR Imaging
    Ueno, Yoshiko
    Tamada, Tsutomu
    Takahashi, Satoru
    RADIOLOGY, 2018, 286 (03) : 1093 - 1093
  • [29] Detection of Prostate Cancer Using Biparametric Prostate MRI, Radiomics, and Kallikreins: A Retrospective Multicenter Study of Men With a Clinical Suspicion of Prostate Cancer
    Montoya Perez, Ileana
    Merisaari, Harri
    Jambor, Ivan
    Ettala, Otto
    Taimen, Pekka
    Knaapila, Juha
    Kekki, Henna
    Khan, Ferdhos L.
    Syrjala, Elise
    Steiner, Aida
    Syvanen, Kari T.
    Verho, Janne
    Seppanen, Marjo
    Rannikko, Antti
    Riikonen, Jarno
    Mirtti, Tuomas
    Lamminen, Tarja
    Saunavaara, Jani
    Falagario, Ugo
    Martini, Alberto
    Pahikkala, Tapio
    Pettersson, Kim
    Bostrom, Peter J.
    Aronen, Hannu J.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 55 (02) : 465 - 477
  • [30] Prediction of Prostate Cancer Grades Using Radiomic Features
    Yamamoto, Yasuhiro
    Haraguchi, Takafumi
    Matsuda, Kaori
    Okazaki, Yoshio
    Kimoto, Shin
    Tanji, Nozomu
    Matsumoto, Atsushi
    Kobayashi, Yasuyuki
    Mimura, Hidefumi
    Hiraki, Takao
    ACTA MEDICA OKAYAMA, 2025, 79 (01) : 21 - 30