Prediction of Prostate Cancer Grades Using Radiomic Features

被引:0
|
作者
Yamamoto, Yasuhiro [1 ]
Haraguchi, Takafumi [3 ]
Matsuda, Kaori [1 ]
Okazaki, Yoshio [1 ]
Kimoto, Shin [1 ]
Tanji, Nozomu [2 ]
Matsumoto, Atsushi [2 ]
Kobayashi, Yasuyuki [4 ]
Mimura, Hidefumi [5 ]
Hiraki, Takao [6 ]
机构
[1] Houshasen Daiichi Hosp, Dept Radiol, Imabari, Ehime 7940054, Japan
[2] Houshasen Daiichi Hosp, Dept Urol, Imabari, Ehime 7940054, Japan
[3] St Marianna Univ, Sch Med, Dept Adv Biomed Imaging & Informat, Kawasaki, Kanagawa 2168511, Japan
[4] St Marianna Univ, Sch Med, Dept Med Informat & Commun Technol Res, Kawasaki, Kanagawa 2168511, Japan
[5] St Marianna Univ, Sch Med, Dept Radiol, Kawasaki, Kanagawa 2168511, Japan
[6] Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Radiol, Okayama 7008558, Japan
关键词
prostate cancer; machine learning; prostate Imaging-Reporting and Data System; radiomics; Gleason score;
D O I
暂无
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
We developed a machine learning model for predicting prostate cancer (PCa) grades using radiomic features of magnetic resonance imaging. 112 patients diagnosed with PCa based on prostate biopsy between January 2014 and December 2021 were evaluated. Logistic regression was used to construct two prediction models, one using radiomic features and prostate-specific antigen (PSA) values (Radiomics model) and the other Prostate Imaging-Reporting and Data System (PI-RADS) scores and PSA values (PI-RADS model), to differentiate high-grade (Gleason score [GS] >= 8) from intermediate or low-grade (GS <8) PCa. Five imaging features were selected for the Radiomics model using the Gini coefficient. Model performance was evaluated using AUC, sensitivity, and specificity. The models were compared by leave-one-out cross-validation with Ridge regularization. Furthermore, the Radiomics model was evaluated using the holdout method and represented by a nomogram. The AUC of the Radiomics and PI-RADS models differed significantly (0.799, 95% CI: 0.712-0.869; and 0.710, 95% CI: 0.617-0.792, respectively). Using holdout method, the Radiomics model yielded AUC of 0.778 (95% CI: 0.552-0.925), sensitivity of 0.769, and specificity of 0.778. It outperformed the PI-RADS model and could be useful in predicting PCa grades, potentially aiding in determining appropriate treatment approaches in PCa patients.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [1] Prediction of Glioma Grades Using Deep Learning with Wavelet Radiomic Features
    Cinarer, Gokalp
    Emiroglu, Bulent Gursel
    Yurttakal, Ahmet Hasim
    APPLIED SCIENCES-BASEL, 2020, 10 (18):
  • [2] Radiomic feature relevance in the prediction of pathological features of prostate cancer
    Isaksson, L. J.
    Summers, P. E.
    Pepa, M.
    Zaffaroni, M.
    Vincini, M. G.
    Corrao, G.
    Mazzola, G. C.
    Rotondi, M.
    Raimondi, S.
    Gandini, S.
    Volpe, S.
    Haron, Z.
    Alessi, S.
    Pricolo, P.
    Mistretta, F. A.
    Luzzago, S.
    Cattani, F.
    Musi, G.
    De Cobelli, O.
    Cremonesi, M.
    Orecchia, R.
    Marvaso, G.
    Petralia, G.
    Jereczek-Fossa, B. A.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S1576 - S1578
  • [3] Identifying the Histomorphometric Basis of MRI Radiomic Features in Distinguishing Gleason Grades of Prostate Cancer
    Penzias, Gregory
    Singanamalli, Asha
    Elliott, Robin
    Gollamudi, Jay
    Shih, Natalie
    Feldman, Michael
    Stricker, Phillip D.
    Delprado, Warick
    Tiwari, Sarita
    Bohm, Maret
    Maree-Haynes, Ann
    Ponsky, Lee
    Tiwari, Pallavi
    Viswanath, Satish
    Madabhushi, Anant
    LABORATORY INVESTIGATION, 2017, 97 : 400A - 401A
  • [4] Identifying the Histomorphometric Basis of MRI Radiomic Features in Distinguishing Gleason Grades of Prostate Cancer
    Penzias, Gregory
    Singanamalli, Asha
    Elliott, Robin
    Gollamudi, Jay
    Shih, Natalie
    Feldman, Michael
    Stricker, Phillip D.
    Delprado, Warick
    Tiwari, Sarita
    Bohm, Maret
    Maree-Haynes, Ann
    Ponsky, Lee
    Tiwari, Pallavi
    Viswanath, Satish
    Madabhushi, Anant
    MODERN PATHOLOGY, 2017, 30 : 400A - 401A
  • [5] Prediction of prostate cancer aggressiveness using quantitative radiomic features using multi-parametric MRI
    Jung, Julip
    Hong, Helen
    Kim, Young-Gi
    Hwang, Sung Il
    Lee, Hak Jong
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [6] Prostate Cancer Survival Time Prediction Using Radiomic Features from PET/CT Scans
    Molin, K.
    Barry, N.
    Gill, S.
    Hassan, G. M.
    Francis, R. J.
    Ong, J. S. L.
    Ebert, M. A.
    Kendrick, J.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S530 - S531
  • [7] Repeatability of CBCT radiomic features and their correlation with CT radiomic features for prostate cancer
    Delgadillo, Rodrigo
    Spieler, Benjamin O.
    Ford, John C.
    Kwon, Deukwoo
    Yang, Fei
    Studenski, Matthew
    Padgett, Kyle R.
    Abramowitz, Matthew C.
    Dal Pra, Alan
    Stoyanova, Radka
    Pollack, Alan
    Dogan, Nesrin
    MEDICAL PHYSICS, 2021, 48 (05) : 2386 - 2399
  • [8] Prediction of CT radiomic features using PET radiomic features and vice versa
    Jha, A.
    Mithun, S.
    Sherkhane, U. B.
    Jaiswar, V.
    Mehta, G.
    Nautiyal, A.
    Purandare, N.
    Rangarajan, V.
    Dekker, A.
    Wee, L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (SUPPL 1) : S509 - S509
  • [9] Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: Preliminary findings
    Penzias, Gregory
    Singanamalli, Asha
    Elliott, Robin
    Gollamudi, Jay
    Shih, Natalie
    Feldman, Michael
    Stricker, Phillip D.
    Delprado, Warick
    Tiwari, Sarita
    Bohm, Maret
    Haynes, Anne-Maree
    Ponsky, Lee
    Fu, Pingfu
    Tiwari, Pallavi
    Viswanath, Satish
    Madabhushi, Anant
    PLOS ONE, 2018, 13 (08):
  • [10] A Multiple Modality Comparison of Radiomic Features for Prostate Cancer
    Delgadillo, R.
    Spieler, B.
    Ford, J.
    Kwon, D.
    Yang, F.
    Studenski, M.
    Padgett, K.
    Abramowitz, M.
    Dal Pra, A.
    Dogan, N.
    MEDICAL PHYSICS, 2021, 48 (06)