Prediction of Prostate Cancer Grades Using Radiomic Features

被引:0
|
作者
Yamamoto, Yasuhiro [1 ]
Haraguchi, Takafumi [3 ]
Matsuda, Kaori [1 ]
Okazaki, Yoshio [1 ]
Kimoto, Shin [1 ]
Tanji, Nozomu [2 ]
Matsumoto, Atsushi [2 ]
Kobayashi, Yasuyuki [4 ]
Mimura, Hidefumi [5 ]
Hiraki, Takao [6 ]
机构
[1] Houshasen Daiichi Hosp, Dept Radiol, Imabari, Ehime 7940054, Japan
[2] Houshasen Daiichi Hosp, Dept Urol, Imabari, Ehime 7940054, Japan
[3] St Marianna Univ, Sch Med, Dept Adv Biomed Imaging & Informat, Kawasaki, Kanagawa 2168511, Japan
[4] St Marianna Univ, Sch Med, Dept Med Informat & Commun Technol Res, Kawasaki, Kanagawa 2168511, Japan
[5] St Marianna Univ, Sch Med, Dept Radiol, Kawasaki, Kanagawa 2168511, Japan
[6] Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Radiol, Okayama 7008558, Japan
关键词
prostate cancer; machine learning; prostate Imaging-Reporting and Data System; radiomics; Gleason score;
D O I
暂无
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
We developed a machine learning model for predicting prostate cancer (PCa) grades using radiomic features of magnetic resonance imaging. 112 patients diagnosed with PCa based on prostate biopsy between January 2014 and December 2021 were evaluated. Logistic regression was used to construct two prediction models, one using radiomic features and prostate-specific antigen (PSA) values (Radiomics model) and the other Prostate Imaging-Reporting and Data System (PI-RADS) scores and PSA values (PI-RADS model), to differentiate high-grade (Gleason score [GS] >= 8) from intermediate or low-grade (GS <8) PCa. Five imaging features were selected for the Radiomics model using the Gini coefficient. Model performance was evaluated using AUC, sensitivity, and specificity. The models were compared by leave-one-out cross-validation with Ridge regularization. Furthermore, the Radiomics model was evaluated using the holdout method and represented by a nomogram. The AUC of the Radiomics and PI-RADS models differed significantly (0.799, 95% CI: 0.712-0.869; and 0.710, 95% CI: 0.617-0.792, respectively). Using holdout method, the Radiomics model yielded AUC of 0.778 (95% CI: 0.552-0.925), sensitivity of 0.769, and specificity of 0.778. It outperformed the PI-RADS model and could be useful in predicting PCa grades, potentially aiding in determining appropriate treatment approaches in PCa patients.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [31] Choline-PET Radiomic features to predict survival outcome in prostate cancer
    Alongi, P.
    Stefano, A.
    Mapelli, P.
    Laudicella, R.
    Gentile, R.
    Sardina, D.
    Russo, G.
    Scalisi, S.
    Ganduscio, G.
    Toia, P.
    Vento, A.
    Picchio, M.
    Baldari, S.
    Midiri, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S608 - S608
  • [32] Investigation of radiomic features on MRI images to identify extraprostatic extension in prostate cancer
    Gumus, Kazim Z.
    Menendez, Manuel
    Baerga, Carlos Gonzalez
    Harmon, Ira
    Kumar, Sindhu
    Mete, Mutlu
    Hernandez, Mauricio
    Ozdemir, Savas
    Yuruk, Nurcan
    Balaji, K. C.
    Gopireddy, Dheeraj R.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 259
  • [33] Placenta Accreta Spectrum and Hysterectomy Prediction Using MRI Radiomic Features
    Leitch, Ka'Toria
    Shahedi, Maysam
    Dormer, James D.
    Do, Quyen N.
    Xi, Yin
    Lewis, Matthew A.
    Herrera, Christina L.
    Spong, Catherine Y.
    Madhuranthakam, Ananth J.
    Twickler, Diane M.
    Fei, Baowei
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [34] Radiomic and Dosiomic Features for the Prediction of Radiation Pneumonitis Across Esophageal Cancer and Lung Cancer
    Puttanawarut, Chanon
    Sirirutbunkajorn, Nat
    Tawong, Narisara
    Jiarpinitnun, Chuleeporn
    Khachonkham, Suphalak
    Pattaranutaporn, Poompis
    Wongsawat, Yodchanan
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [35] Overall Survival Prediction in Glioblastoma With Radiomic Features Using Machine Learning
    Baid, Ujjwal
    Rane, Swapnil U.
    Talbar, Sanjay
    Gupta, Sudeep
    Thakur, Meenakshi H.
    Moiyadi, Aliasgar
    Mahajan, Abhishek
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
  • [36] Prediction of extracapsular extension of prostate cancer by MRI radiomic signature: a systematic review
    Guerra, Adalgisa
    Wang, Helen
    Orton, Matthew R.
    Konidari, Marianna
    Papanikolaou, Nickolas K.
    Koh, Dow Mu
    Donato, Helena
    Alves, Filipe Caseiro
    INSIGHTS INTO IMAGING, 2024, 15 (01):
  • [37] Value of handcrafted and deep radiomic features towards training robust machine learning classifiers for prediction of prostate cancer disease aggressiveness
    Ana Rodrigues
    Nuno Rodrigues
    João Santinha
    Maria V. Lisitskaya
    Aycan Uysal
    Celso Matos
    Inês Domingues
    Nickolas Papanikolaou
    Scientific Reports, 13
  • [38] Biochemical recurrence prediction after radiotherapy for prostate cancer with T2w magnetic resonance imaging radiomic features
    Fernandes, Catarina Dinis
    Dinh, Cuong, V
    Walraven, Iris
    Heijmink, Stijn W.
    Smolic, Milena
    van Griethuysen, Joost J. M.
    Simoes, Rita
    Losnegard, Are
    van der Poel, Henk G.
    Pos, Floris J.
    van der Heide, Uulke A.
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2018, 7 : 9 - 15
  • [39] Value of handcrafted and deep radiomic features towards training robust machine learning classifiers for prediction of prostate cancer disease aggressiveness
    Rodrigues, Ana
    Rodrigues, Nuno
    Santinha, Joao
    Lisitskaya, Maria V.
    Uysal, Aycan
    Matos, Celso
    Domingues, Ines
    Papanikolaou, Nickolas
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [40] UNI- AND MULTI-MODAL RADIOMIC FEATURES FOR THE PREDICTING PROSTATE CANCER AGGRESSIVENESS
    Jung, Julip
    Hong, Helen
    Lee, Hansang
    Hwang, Sung Il
    Lee, Hak Jong
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1343 - 1346