Partial information maximum principle for optimal control problem with regime switching in the conditional mean-field model

被引:0
|
作者
Tamer, Lazhar [1 ]
Ben Abdallah, Hani [1 ]
机构
[1] Mohamed Khider Univ, Lab Math, Biskra POB 145, Biskra 07000, Algeria
关键词
Stochastic maximum principle; optimal control; partial information; Markov regime switching; conditional mean field; STOCHASTIC DIFFERENTIAL-EQUATIONS; JUMP-DIFFUSION MODEL; SYSTEM;
D O I
10.1515/rose-2022-2094
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with a stochastic optimal control problem for a Markov regime switching in the conditional mean field model. Sufficient and necessary maximum principles for optimal control under partial information are obtained. Finally, we illustrate our result through a model which gives an explicit solution.
引用
收藏
页码:103 / 115
页数:13
相关论文
共 50 条
  • [22] Linear Quadratic Optimal Control Problems for Conditional Mean-Field Stochastic Differential Equations Under Partial Information
    Feng, Siqi
    Wang, Guangchen
    Xiao, Hua
    Xing, Zhuangzhuang
    Zhang, Huanjun
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2025,
  • [23] A mean-field stochastic linear-quadratic optimal control problem with jumps under partial information*
    Yang, Yiyun
    Tang, Maoning
    Meng, Qingxin
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
  • [24] Maximum principle for discrete-time stochastic control problem of mean-field type
    Dong, Bozhang
    Nie, Tianyang
    Wu, Zhen
    AUTOMATICA, 2022, 144
  • [25] A mean-field stochastic linear-quadratic optimal control problem with jumps under partial information
    Yang, Yiyun
    Tang, Maoning
    Meng, Qingxin
    ESAIM - Control, Optimisation and Calculus of Variations, 2022, 28
  • [26] Mean-Field Pontryagin Maximum Principle
    Bongini, Mattia
    Fornasier, Massimo
    Rossi, Francesco
    Solombrino, Francesco
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 175 (01) : 1 - 38
  • [27] Mean-Field Pontryagin Maximum Principle
    Mattia Bongini
    Massimo Fornasier
    Francesco Rossi
    Francesco Solombrino
    Journal of Optimization Theory and Applications, 2017, 175 : 1 - 38
  • [28] Maximum Principle for Mean-Field SDEs Under Model Uncertainty
    He, Wei
    Luo, Peng
    Wang, Falei
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (03):
  • [29] Maximum Principle for Mean-Field SDEs Under Model Uncertainty
    Wei He
    Peng Luo
    Falei Wang
    Applied Mathematics & Optimization, 2023, 87
  • [30] SUFFICIENT MAXIMUM PRINCIPLE FOR PARTIALLY OBSERVED MEAN-FIELD STOCHASTIC OPTIMAL CONTROL PROBLEMS WITH DELAYS
    Ma, Heping
    Shi, Yu
    Wang, Weifeng
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2024, 13 (06): : 1436 - 1459