A mean-field stochastic linear-quadratic optimal control problem with jumps under partial information*

被引:0
|
作者
Yang, Yiyun [1 ]
Tang, Maoning [2 ]
Meng, Qingxin [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Huzhou Univ, Dept Math Sci, Huzhou 313000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Mean-field; linear-quadratic optimal control; partial information; Hamiltonian system; feedback representation; adjoint processes; Riccati equation; DIFFERENTIAL-EQUATIONS;
D O I
10.1051/cocv/2022039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, the stochastic linear-quadratic optimal control problem of mean-field type with jumps under partial information is discussed. The state equation which contains affine terms is a SDE with jumps driven by a multidimensional Brownian motion and a Poisson stochastic martingale measure, and the quadratic cost function contains cross terms. In addition, the state and the control as well as their expectations are contained both in the state equation and the cost functional. This is the so-called optimal control problem of mean-field type. Firstly, the existence and uniqueness of the optimal control is proved. Secondly, the adjoint processes of the state equation is introduced, and by using the duality technique, the optimal control is characterized by the stochastic Hamiltonian system. Thirdly, by applying a decoupling technology, we deduce two integro-differential Riccati equations and get the feedback representation of the optimal control under partial information. Fourthly, the existence and uniqueness of the solutions of two Riccati equations are proved. Finally, we discuss a special case, and establish the corresponding feedback representation of the optimal control by means of filtering technique.
引用
收藏
页数:33
相关论文
共 50 条