EVALUATION OF FOREST DEGRADATION METHODOLOGIES USING LANDSAT TIME SERIES ON ARGENTINEAN DRY CHACO FOREST

被引:0
|
作者
Banchero, Santiago [1 ]
Veron, Santiago [1 ,2 ,3 ]
De Abelleyra, Diego [1 ]
Caride, Costanza [3 ]
Gasparri, Ignacio [2 ]
机构
[1] Inst Clima & Agua INTA, Buenos Aires, Argentina
[2] Inst Ecol Reg UNT CONICET, Buenos Aires, Argentina
[3] Univ Buenos Aires, Fac Agron, Buenos Aires, Argentina
关键词
CODED; BFAST; FCDM; Forest Disturbance; Temperate forests;
D O I
10.1109/IGARSS52108.2023.10282634
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Nowadays, several methodologies allow disturbance detection in tropical forests with good results. On the other hand, subtropical forests represent a challenger as the robustness of these tools can be reduced by seasonality. In this work, we test three disturbance detection methods to assess their performance in a biome with a dry season like the Argentinean dry Chaco forest. We focused on the evaluation of both the accuracy and the number of hits by type of disturbance. The methods show acceptable accuracy values for the complexity of the problem and proved to be a very useful tool as a proxy of deforestation.
引用
收藏
页码:3009 / 3012
页数:4
相关论文
共 50 条
  • [41] ON THE RELEVANCE OF RADIOMETRIC NORMALIZATION OF DENSE LANDSAT TIME SERIES FOR FOREST MONITORING
    Thonfeld, Frank
    Schmidt, Michael
    Dubovyk, Olena
    Menz, Gunter
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2665 - 2668
  • [42] Shape selection in Landsat time series: a tool for monitoring forest dynamics
    Moisen, Gretchen G.
    Meyer, Mary C.
    Schroeder, Todd A.
    Liao, Xiyue
    Schleeweis, Karen G.
    Freeman, Elizabeth A.
    Toney, Chris
    GLOBAL CHANGE BIOLOGY, 2016, 22 (10) : 3518 - 3528
  • [43] Analysis of trends and changes in the successional trajectories of tropical forest using the Landsat NDVI time series
    Berveglieri, Adilson
    Imai, Nilton N.
    Christovam, Luiz E.
    Galo, Maria L. B. T.
    Tommaselli, Antonio M. G.
    Honkavaara, Eija
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 24
  • [44] Characterizing Forest Change Using Community-Based Monitoring Data and Landsat Time Series
    DeVries, Ben
    Pratihast, Arun Kumar
    Verbesselt, Jan
    Kooistra, Lammert
    Herold, Martin
    PLOS ONE, 2016, 11 (03):
  • [45] Detecting and Attributing Drivers of Forest Disturbance in the Colombian Andes Using Landsat Time-Series
    Murillo-Sandoval, Paulo J.
    Hilker, Thomas
    Krawchuk, Meg A.
    Van Den Hoek, Jamon
    FORESTS, 2018, 9 (05):
  • [46] An autoencoder-based model for forest disturbance detection using Landsat time series data
    Zhou, Gaoxiang
    Liu, Ming
    Liu, Xiangnan
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2021, 14 (09) : 1087 - 1102
  • [47] Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series
    Zhu, Xiaolin
    Liu, Desheng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 102 : 222 - 231
  • [48] Estimating Forest Site Productivity Using Airborne Laser Scanning Data and Landsat Time Series
    Tompalski, Piotr
    Coops, Nicholas C.
    White, Joanne C.
    Wulder, Michael A.
    Pickell, Paul D.
    CANADIAN JOURNAL OF REMOTE SENSING, 2015, 41 (03) : 232 - 245
  • [49] Structural and functional characterization of the dry forest in central Argentine Chaco
    Benedictto, Mariana N.
    Gomez-Valencia, Bibiana
    Torrella, Sebastian A.
    MADERA Y BOSQUES, 2019, 25 (02):
  • [50] Effectiveness of the obligation of keeping forest strips for native forest connectivity and conservation in the dry Chaco, Argentina
    Kliger, Marlene
    Ginzburg, Ruben G.
    FOREST SYSTEMS, 2022, 31 (03)