EVALUATION OF FOREST DEGRADATION METHODOLOGIES USING LANDSAT TIME SERIES ON ARGENTINEAN DRY CHACO FOREST

被引:0
|
作者
Banchero, Santiago [1 ]
Veron, Santiago [1 ,2 ,3 ]
De Abelleyra, Diego [1 ]
Caride, Costanza [3 ]
Gasparri, Ignacio [2 ]
机构
[1] Inst Clima & Agua INTA, Buenos Aires, Argentina
[2] Inst Ecol Reg UNT CONICET, Buenos Aires, Argentina
[3] Univ Buenos Aires, Fac Agron, Buenos Aires, Argentina
关键词
CODED; BFAST; FCDM; Forest Disturbance; Temperate forests;
D O I
10.1109/IGARSS52108.2023.10282634
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Nowadays, several methodologies allow disturbance detection in tropical forests with good results. On the other hand, subtropical forests represent a challenger as the robustness of these tools can be reduced by seasonality. In this work, we test three disturbance detection methods to assess their performance in a biome with a dry season like the Argentinean dry Chaco forest. We focused on the evaluation of both the accuracy and the number of hits by type of disturbance. The methods show acceptable accuracy values for the complexity of the problem and proved to be a very useful tool as a proxy of deforestation.
引用
收藏
页码:3009 / 3012
页数:4
相关论文
共 50 条
  • [31] Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010
    Margono, Belinda Arunarwati
    Turubanova, Svetlana
    Zhuravleva, Ilona
    Potapov, Peter
    Tyukavina, Alexandra
    Baccini, Alessandro
    Goetz, Scott
    Hansen, Matthew C.
    ENVIRONMENTAL RESEARCH LETTERS, 2012, 7 (03):
  • [32] The disappearing Dry Chaco, one of the last dry forest systems on earth
    de la Sancha, Noe U.
    Boyle, Sarah A.
    McIntyre, Nancy E.
    Brooks, Daniel M.
    Yanosky, Alberto
    Soto, Ericka Cuellar
    Mereles, Fatima
    Camino, Micaela
    Stevens, Richard D.
    LANDSCAPE ECOLOGY, 2021, 36 (10) : 2997 - 3012
  • [33] Evaluation of the influence of disturbances on forest vegetation using Landsat time series; a case study of the Low Tatras National Park
    Hladky, Radovan
    Lastovicka, Josef
    Holman, Lukas
    Stych, Premysl
    EUROPEAN JOURNAL OF REMOTE SENSING, 2020, 53 (01) : 40 - 66
  • [34] Ecological and social consequences of the Forest Transition Theory as applied to the Argentinean Great Chaco
    Matteucci, Silvia D.
    Totino, Mariana
    Aristide, Pablo
    LAND USE POLICY, 2016, 51 : 8 - 17
  • [35] The disappearing Dry Chaco, one of the last dry forest systems on earth
    Noé U. de la Sancha
    Sarah A. Boyle
    Nancy E. McIntyre
    Daniel M. Brooks
    Alberto Yanosky
    Ericka Cuellar Soto
    Fatima Mereles
    Micaela Camino
    Richard D. Stevens
    Landscape Ecology, 2021, 36 : 2997 - 3012
  • [36] Using Space-Time Features to Improve Detection of Forest Disturbances from Landsat Time Series
    Hamunyela, Eliakim
    Reiche, Johannes
    Verbesselt, Jan
    Herold, Martin
    REMOTE SENSING, 2017, 9 (06)
  • [37] Mapping forest disturbance and recovery for forest dynamics over large areas using Landsat time-series remote sensing
    Huy Trung Nguyen
    Soto-Berelov, Mariela
    Jones, Simon D.
    Haywood, Andrew
    Hislop, Samuel
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XIX, 2017, 10421
  • [38] Regional-Scale Forest Mapping over Fragmented Landscapes Using Global Forest Products and Landsat Time Series Classification
    Myroniuk, Viktor
    Kutia, Mykola
    Sarkissian, Arbi J.
    Bilous, Andrii
    Liu, Shuguang
    REMOTE SENSING, 2020, 12 (01)
  • [39] Detecting of forest afforestation and deforestation in Hainan Jianfengling Forest Park (China) using yearly Landsat time-series images
    Jiao, Quanjun
    Zhang, Xiao
    Sun, Qi
    MIPPR 2017: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2018, 10611
  • [40] NEAR REAL TIME MULTISENSOR ALGORITHM FOR DEFORESTATION ALERT OVER THE DRY CHACO FOREST
    Roitberg, E.
    Barraza, V.
    Grings, F.
    Salvia, M.
    Perna, P.
    Barber, M.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 818 - 821