Intelligence at the Extreme Edge: A Survey on Reformable TinyML

被引:30
|
作者
Rajapakse, Visal [1 ]
Karunanayake, Ishan [2 ]
Ahmed, Nadeem [2 ]
机构
[1] Univ Westminster, 309 Regent St, London W1B 2HW, England
[2] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia
关键词
TinyML; survey; Microcontroller Units; Internet of Things; NETWORKS;
D O I
10.1145/3583683
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Machine Learning (TinyML) is an upsurging research field that proposes to democratize the use of Machine Learning and Deep Learning on highly energy-efficient frugal Microcontroller Units (MCUs). Considering the general assumption that TinyML can only run inference, growing interest in the domain has led to work that makes them reformable, i.e., solutions that permit models to improve once deployed. This work presents a survey on reformable TinyML solutions with the proposal of a novel taxonomy. Here, the suitability of each hierarchical layer for reformability is discussed. Furthermore, we explore the workflow of TinyML and analyze the identified deployment schemes, available tools, and the scarcely available benchmarking tools. Finally, we discuss how reformable TinyML can impact a few selected industrial areas and discuss the challenges, and future directions, and its fusion with next-generation AI.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] Edge computing in Smart Agriculture scenario based on TinyML for irrigation control
    Hidalgo, Carlos Hernandez
    Gonzalez-Vidal, Aurora
    Skarmeta, Antonio F.
    2023 IEEE 9TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT, 2023,
  • [42] Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence
    Deng, Shuiguang
    Zhao, Hailiang
    Fang, Weijia
    Yin, Jianwei
    Dustdar, Schahram
    Zomaya, Albert Y.
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (08) : 7457 - 7469
  • [43] A TinyML approach to non-repudiable anomaly detection in extreme industrial environments
    Antonini, Mattia
    Pincheira, Miguel
    Vecchio, Massimo
    Antonelli, Fabio
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR INDUSTRY 4.0 & IOT (IEEE METROIND4.0&IOT), 2022, : 397 - 402
  • [44] Energy-Efficient Inference on the Edge Exploiting TinyML Capabilities for UAVs
    Raza, Wamiq
    Osman, Anas
    Ferrini, Francesco
    Natale, Francesco De
    DRONES, 2021, 5 (04)
  • [45] Edge Intelligence
    Dustdar, Schahram
    2021 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES, ICWS 2021, 2021, : 710 - 710
  • [46] Online Processing of Vehicular Data on the Edge Through an Unsupervised TinyML Regression Technique
    Andrade, Pedro
    Silva, Ivanovitch
    Diniz, Marianne
    Flores, Thommas
    Costa, Daniel G.
    Soares, Eduardo
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2024, 23 (03)
  • [47] Social Edge Intelligence: Integrating Human and Artificial Intelligence at the Edge
    Wang, Dong
    Zhang, Daniel
    Zhang, Yang
    Rashid, Md Tahmid
    Shang, Lanyu
    Wei, Na
    2019 IEEE FIRST INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2019), 2019, : 194 - 201
  • [48] Supporting AI Engineering on the IoT Edge through Model-Driven TinyML
    Moin, Armin
    Challenger, Moharram
    Badii, Atta
    Gunnemann, Stephan
    2022 IEEE 46TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2022), 2022, : 884 - 893
  • [49] Distributed Artificial Intelligence Empowered by End-Edge-Cloud Computing: A Survey
    Duan, Sijing
    Wang, Dan
    Ren, Ju
    Lyu, Feng
    Zhang, Ye
    Wu, Huaqing
    Shen, Xuemin
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2023, 25 (01): : 591 - 624
  • [50] A Survey on Edge Intelligence and Lightweight Machine Learning Support for Future Applications and Services
    Hoffpauir, Kyle
    Simmons, Jacob
    Schmidt, Nikolas
    Pittala, Rachitha
    Briggs, Isaac
    Makani, Shanmukha
    Jararweh, Yaser
    ACM JOURNAL OF DATA AND INFORMATION QUALITY, 2023, 15 (02):