Intelligence at the Extreme Edge: A Survey on Reformable TinyML

被引:30
|
作者
Rajapakse, Visal [1 ]
Karunanayake, Ishan [2 ]
Ahmed, Nadeem [2 ]
机构
[1] Univ Westminster, 309 Regent St, London W1B 2HW, England
[2] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia
关键词
TinyML; survey; Microcontroller Units; Internet of Things; NETWORKS;
D O I
10.1145/3583683
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Machine Learning (TinyML) is an upsurging research field that proposes to democratize the use of Machine Learning and Deep Learning on highly energy-efficient frugal Microcontroller Units (MCUs). Considering the general assumption that TinyML can only run inference, growing interest in the domain has led to work that makes them reformable, i.e., solutions that permit models to improve once deployed. This work presents a survey on reformable TinyML solutions with the proposal of a novel taxonomy. Here, the suitability of each hierarchical layer for reformability is discussed. Furthermore, we explore the workflow of TinyML and analyze the identified deployment schemes, available tools, and the scarcely available benchmarking tools. Finally, we discuss how reformable TinyML can impact a few selected industrial areas and discuss the challenges, and future directions, and its fusion with next-generation AI.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Edge Intelligence and Internet of Things in Healthcare: A Survey
    Amin, Syed Umar
    Hossain, M. Shamim
    IEEE ACCESS, 2021, 9 : 45 - 59
  • [22] Special Session: Approximate TinyML Systems: Full System Approximations for Extreme Energy-Efficiency in Intelligent Edge Devices
    Raha, Arnab
    Ghosh, Soumendu
    Mohapatra, Debabrata
    Mathaikutty, Deepak A.
    Sung, Raymond
    Brick, Cormac
    Raghunathan, Vijay
    2021 IEEE 39TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD 2021), 2021, : 13 - 16
  • [23] A Super-Efficient TinyML Processor for the Edge Metaverse
    Khajooei, Arash
    Jamshidi, Mohammad
    Shokouhi, Shahriar B. B.
    INFORMATION, 2023, 14 (04)
  • [24] RAMAN: A Reconfigurable and Sparse tinyML Accelerator for Inference on Edge
    Krishna, Adithya
    Rohit Nudurupati, Srikanth
    Chandana, D. G.
    Dwivedi, Pritesh
    van Schaik, Andre
    Mehendale, Mahesh
    Thakur, Chetan Singh
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (14): : 24831 - 24845
  • [25] Trustworthy decentralized collaborative learning for edge intelligence: A survey
    Yu, Dongxiao
    Xie, Zhenzhen
    Yuan, Yuan
    Chen, Shuzhen
    Qiao, Jing
    Wang, Yangyang
    Yu, Yong
    Zou, Yifei
    Zhang, Xiao
    HIGH-CONFIDENCE COMPUTING, 2023, 3 (03):
  • [26] Disclosing Edge Intelligence: A Systematic Meta-Survey
    Barbuto, Vincenzo
    Savaglio, Claudio
    Chen, Min
    Fortino, Giancarlo
    BIG DATA AND COGNITIVE COMPUTING, 2023, 7 (01)
  • [27] A Survey on Optimization Techniques for Edge Artificial Intelligence (AI)
    Surianarayanan, Chellammal
    Lawrence, John Jeyasekaran
    Chelliah, Pethuru Raj
    Prakash, Edmond
    Hewage, Chaminda
    SENSORS, 2023, 23 (03)
  • [28] Edge Intelligence for Smart Grid: A Survey on Application Potentials
    Gooi, Hoay Beng
    Wang, Tianjing
    Tang, Yong
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2023, 9 (05): : 1623 - 1640
  • [29] TinyML Techniques for running Machine Learning models on Edge Devices
    Mukherjee, Arijit
    Ukil, Arijit
    Dey, Swarnava
    Kulkarni, Gitesh
    SECOND INTERNATIONAL CONFERENCE ON AIML SYSTEMS 2022, 2022,
  • [30] Artificial Intelligence for Edge Service Optimization in Internet of Vehicles: A Survey
    Xiaolong Xu
    Haoyuan Li
    Weijie Xu
    Zhongjian Liu
    Liang Yao
    Fei Dai
    TsinghuaScienceandTechnology, 2022, 27 (02) : 270 - 287