On the Performance of Training-Based IRS-Assisted Communications Under Correlated Rayleigh Fading

被引:6
|
作者
Sun, Zeyu [1 ]
Jing, Yindi [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2R3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Channel estimation; Phase estimation; Transceivers; Sensors; Receivers; Communication systems; Transmitters; Intelligent reflecting surface (IRS); correlated channel; hybrid IRS; channel phase estimation; RECONFIGURABLE INTELLIGENT SURFACES; REFLECTING SURFACE; CHANNEL ESTIMATION; WIRELESS NETWORK; PROBABILITY; SYSTEMS; DESIGN;
D O I
10.1109/TCOMM.2023.3257371
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The channel state information (CSI) is crucial in communication systems assisted by intelligent reflecting surfaces (IRSs). This paper is on the phase estimation of individual channels in IRS-assisted communication systems with single-antenna transceivers under the correlated Rayleigh fading. We consider both the fully-active-IRS where all IRS elements are active and the hybrid-IRS where partially IRS elements are active, where an active IRS element is equipped with a sensing device for pilot signal reception. We derive the maximum likelihood (ML) estimator for channel phases of all IRS elements based on the observations on active IRS elements. This estimator is also proved to be the minimum mean square error (MMSE), maximum a posterior (MAP) and minimum mean absolute error (MMAE) estimators. Then we conduct performance analysis in terms of the gain and the capacity of the cascaded transmitter-IRS-receiver channel with perfectly known and estimated individual channel phases. Numerical results are provided to show that the performance of IRS-assisted communication systems with our proposed phase estimator is close to that with perfect CSI and validate our theoretical analysis.
引用
收藏
页码:3117 / 3131
页数:15
相关论文
共 50 条
  • [31] Deep Reinforcement Learning for Deception in IRS-assisted UAV Communications
    Olowononi, Felix O.
    Rawat, Danda B.
    Kamhoua, Charles A.
    Sadler, Brian M.
    2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,
  • [32] IRS-Assisted High Mobility Communications Using OTFS Modulation
    Bora, Amit Sravan
    Phan, Khoa T. T.
    Hong, Yi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (02) : 376 - 380
  • [33] Deep Reinforcement Learning for IRS-Assisted UAV Covert Communications
    Songjiao Bi
    Langtao Hu
    Quanjin Liu
    Jianlan Wu
    Rui Yang
    Lei Wu
    ChinaCommunications, 2023, 20 (12) : 131 - 141
  • [34] Deep Reinforcement Learning for Deception in IRS-assisted UAV Communications
    Olowononi, Felix O.
    Rawat, Danda B.
    Kamhoua, Charles A.
    Sadler, Brian M.
    Proceedings - IEEE Military Communications Conference MILCOM, 2022, 2022-November : 763 - 768
  • [35] A Robust DCB Approach to IRS-Assisted Vehicular Communications with ICSI
    Pereira-Ruisanchez, Dariel
    Fresnedo, Oscar
    Perez-Adan, Darian
    Castedo, Luis
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [36] IRS-Assisted Short Packet Wireless Energy Transfer and Communications
    Zhang, Bingxin
    Wang, Kezhi
    Yang, Kun
    Zhang, Guopeng
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (02) : 303 - 307
  • [37] Performance of Narrowband Signal Detection under Correlated Rayleigh Fading Based on Synthetic Array
    Broumandan, Ali
    Nielsen, John
    Lachapelle, Gerard
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2009, 2009
  • [38] Analysis of IRS-Assisted Downlink Wireless Networks Over Generalized Fading
    Li, Yunli
    Chun, Young Jin
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 10182 - 10197
  • [39] DRL-Based IRS-Assisted Secure Hybrid Visible Light and mmWave Communications
    Saifaldeen, Danya A.
    Al-Baseer, Abdullatif M.
    Ciftler, Bekir S.
    Abdallah, Mohamed M.
    Qaraqe, Khalid A.
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 3007 - 3020
  • [40] Grouping-Based Channel Estimation Scheme for IRS-Assisted Wireless Communications Network
    Mukherjee, Prateek
    Joshi, Sandeep
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (01) : 173 - 177