DRL-Based IRS-Assisted Secure Hybrid Visible Light and mmWave Communications

被引:0
|
作者
Saifaldeen, Danya A. [1 ]
Al-Baseer, Abdullatif M. [1 ]
Ciftler, Bekir S. [2 ]
Abdallah, Mohamed M. [1 ]
Qaraqe, Khalid A. [3 ]
机构
[1] Hamad Bin Khalifa Univ, Coll Sci & Engn, Div Informat & Comp Technol, Doha, Qatar
[2] Univ Doha Sci & Technol, Coll Comp & IT, Div Data Sci & Artificial Intelligence, Doha, Qatar
[3] Texas A&M Univ Qatar, Dept Elect & Comp Engn, Doha, Qatar
关键词
Visible light communications; millimeter wave; deep learning; machine learning; deep reinforcement learning; intelligent reflecting surfaces; secrecy capacity; physical layer security; deep deterministic policy gradient; INTELLIGENT REFLECTING SURFACE;
D O I
10.1109/OJCOMS.2024.3395425
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper explores a new advancement in physical layer security (PLS) techniques, focusing on the integration of Intelligent Reflecting Surfaces (IRS). This work centers on developing an intelligent hybrid system combining communication lines using millimeter wave (mmWave) and Visible light communication (VLC). The system comprises four VLC access points with light fixtures, reinforced by a mirror array sheet, and a mmWave access point with antennas, supported by a reflecting unit sheet. Within the system, both sheets function as IRS. The aim is to enhance the secrecy capacity (SC) of the system by optimizing the beamforming weights at the VLC fixtures, the beamforming weights at the mmWave AP, the mirror array configurations, and the phase shift vector while meeting specific power constraints. Given the numerous variables and the dynamic nature of user mobility, traditional optimization techniques may be inadequate for improving SC. To address this complexity optimally, we propose a deep reinforcement learning (DRL) approach based on the deep deterministic policy gradient (DDPG) technique. The DDPG algorithm can adapt to channel variations due to user movement and high-dimensional factors. Furthermore, it intelligently selects the optimal technique to improve SC, whether VLC or RF. Simulation results confirm the efficacy of our approach in enhancing the SC for the authorized receiver, particularly in mmWave connections.
引用
收藏
页码:3007 / 3020
页数:14
相关论文
共 50 条
  • [1] DRL-Based IRS-Assisted Secure Visible Light Communications
    Saifaldeen, Danya A.
    Ciftler, Bekir S.
    Abdallah, Mohamed M.
    Qaraqe, Khalid A.
    [J]. IEEE PHOTONICS JOURNAL, 2022, 14 (06):
  • [2] DRL-Based Sequential Scheduling for IRS-Assisted MIMO Communications
    Pereira-Ruisanchez, Dariel
    Fresnedo, Oscar
    Perez-Adan, Darian
    Castedo, Luis
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (06) : 8445 - 8459
  • [3] Hybrid Precoding for IRS-assisted Secure mmWave Communication System with SWIPT
    Xue, Jianghao
    Zhou, Xin
    Wang, Chao
    Wang, Danyang
    Zhao, Yue
    Li, Zan
    [J]. 2020 INTERNATIONAL CONFERENCE ON SPACE-AIR-GROUND COMPUTING (SAGC 2020), 2020, : 82 - 86
  • [4] Secure mmWave Vehicular Communications with DRL-based Joint Relay and Jammer Selection
    Ju, Ying
    Gao, Zipeng
    Liu, Lei
    Pei, Qingqi
    Yu, Keping
    Rodrigues, Joel J. P. C.
    [J]. ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5221 - 5226
  • [5] Robust Design for IRS-Assisted MISO-NOMA Systems: A DRL-Based Approach
    Waraiet, Abdulhamed
    Cumanan, Kanapathippillai
    Ding, Zhiguo
    Dobre, Octavia A.
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (03) : 592 - 596
  • [6] Deep Learning Based Joint Beamforming Design in IRS-Assisted Secure Communications
    Zhang, Chi
    Liu, Yiliang
    Chen, Hsiao-Hwa
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (12) : 16861 - 16865
  • [7] IRS-assisted vehicular visible light communications systems: channel modeling and performance analysis
    Rabiepoor, Arash
    Nezamalhosseini, S. Alireza
    Chen, Lawrence R.
    [J]. APPLIED OPTICS, 2024, 63 (01) : 167 - 178
  • [8] Robust Secure Transmission Design for IRS-Assisted mmWave Cognitive Radio Networks
    Wu, Xuewen
    Ma, Jingxiao
    Gu, Chenwei
    Xue, Xiaoping
    Zeng, Xin
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8441 - 8456
  • [9] Hybrid IRS-Assisted Secure Satellite Downlink Communications: A Fast Deep Reinforcement Learning Approach
    Ngo, Quynh Tu
    Phan, Khoa Tran
    Mahmood, Abdun
    Xiang, Wei
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (04): : 2858 - 2869
  • [10] Energy-Efficient mmWave IoT Communications With Multihop IRS-Assisted Systems
    Liang, Renjie
    Fan, Jiancun
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (21) : 19344 - 19355