DRL-Based Sequential Scheduling for IRS-Assisted MIMO Communications

被引:0
|
作者
Pereira-Ruisanchez, Dariel [1 ,2 ]
Fresnedo, Oscar [1 ,2 ]
Perez-Adan, Darian [1 ,2 ]
Castedo, Luis [1 ,2 ]
机构
[1] Univ A Coruna, Dept Comp Engn, La Coruna 15001, Spain
[2] Univ A Coruna, CITIC Res Ctr, La Coruna 15001, Spain
关键词
MIMO communication; Optimization; Resource management; Reinforcement learning; Uplink; Processor scheduling; Dynamic scheduling; Scheduling; intelligent reflecting surfaces; deep reinforcement learning; PPO; resource allocation; INTELLIGENT REFLECTING SURFACE; OPTIMIZATION; ALLOCATION;
D O I
10.1109/TVT.2024.3359117
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Efficient resource allocation strategies are pivotal in vehicular communications as connected devices steeply increase in scenarios with much more stringent requirements. In this work, we propose a deep reinforcement learning (DRL)-based sequential scheduling approach for sum-rate maximization in the uplink of intelligent reflecting surface (IRS)-assisted multi-user (MU) multiple-input multiple-output (MIMO) vehicular communications. We formulate the scheduling task as a partially observable Markov decision process (POMDP) and propose a novel stream-level sequential solution based on the proximal policy optimization (PPO) algorithm. We consider a realistic imperfect channel state information (ICSI) model and assess the proposal in several communication setups comprising both spatially uncorrelated and correlated links. Simulation results show that the proposed DRL-based sequential scheduling approach is a robust alternative to more computationally demanding benchmarks.
引用
收藏
页码:8445 / 8459
页数:15
相关论文
共 50 条
  • [1] DRL-Based IRS-Assisted Secure Visible Light Communications
    Saifaldeen, Danya A.
    Ciftler, Bekir S.
    Abdallah, Mohamed M.
    Qaraqe, Khalid A.
    [J]. IEEE PHOTONICS JOURNAL, 2022, 14 (06):
  • [2] DRL-Based IRS-Assisted Secure Hybrid Visible Light and mmWave Communications
    Saifaldeen, Danya A.
    Al-Baseer, Abdullatif M.
    Ciftler, Bekir S.
    Abdallah, Mohamed M.
    Qaraqe, Khalid A.
    [J]. IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 3007 - 3020
  • [3] Robust Design for IRS-Assisted MISO-NOMA Systems: A DRL-Based Approach
    Waraiet, Abdulhamed
    Cumanan, Kanapathippillai
    Ding, Zhiguo
    Dobre, Octavia A.
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (03) : 592 - 596
  • [4] Joint Optimization of IRS-assisted MU-MIMO Communication Systems through a DRL-based Twin Delayed DDPG Approach
    Pereira-Ruisanchez, Dariel
    Fresnedo, Oscar
    Perez-Adan, Darian
    Castedo, Luis
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2022,
  • [5] MARS: A DRL-Based Multi-Task Resource Scheduling Framework for UAV With IRS-Assisted Mobile Edge Computing System
    Jiang, Feibo
    Peng, Yubo
    Wang, Kezhi
    Dong, Li
    Yang, Kun
    [J]. IEEE TRANSACTIONS ON CLOUD COMPUTING, 2023, 11 (04) : 3700 - 3712
  • [6] Training Optimization for Subarray-Based IRS-Assisted MIMO Communications
    Dai, Hui
    Zhang, Zhongshan
    Gong, Shiqi
    Xing, Chengwen
    An, Jianping
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (04) : 2890 - 2905
  • [7] On the Degrees of Freedom of IRS-Assisted Non-Coherent MIMO Communications
    Seddik, Karim G.
    [J]. IEEE COMMUNICATIONS LETTERS, 2022, 26 (05) : 1175 - 1179
  • [8] Machine Learning for IRS-Assisted MU-MIMO Communications with Estimated Channels
    He, Zhizhou
    Heliot, Fabien
    Ma, Yi
    [J]. 2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [9] Robust Scheduling for IRS-assisted Mm-wave Train-ground Communications
    Chen, Chen
    Niu, Yong
    Han, Zhu
    Wang, Ning
    Ai, Bo
    [J]. IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2015 - 2020
  • [10] User and Passive Beam Scheduling Scheme for Liquid Crystal IRS-assisted mmWave Communications
    Yoshikawa, Keiji
    Ohto, Takuya
    Hayashi, Takahiro
    [J]. 2024 18TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP, 2024,