Hybrid IRS-Assisted Secure Satellite Downlink Communications: A Fast Deep Reinforcement Learning Approach

被引:0
|
作者
Ngo, Quynh Tu [1 ]
Phan, Khoa Tran [2 ]
Mahmood, Abdun [2 ]
Xiang, Wei [2 ]
机构
[1] Univ Technol Sydney, Sch Elect & Data Engn, Ultimo, NSW 2007, Australia
[2] La Trobe Univ, Sch Comp Engn & Math Sci, Bundoora, Vic 3086, Australia
关键词
Satellites; Array signal processing; Vectors; Downlink; Optimization; MISO communication; Hybrid power systems; Hybrid IRS; satellite downlink communications; physical layer security; fast reinforcement learning; robust design; INTELLIGENT REFLECTING SURFACE; WIRELESS COMMUNICATIONS; CHANNEL ESTIMATION; ROBUST; TRANSMISSION; OPTIMIZATION; SYSTEMS;
D O I
10.1109/TETCI.2024.3378605
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper considers a secure satellite downlink communication system with a hybrid intelligent reflecting surface (IRS). A robust design problem for the satellite and IRS joint beamforming is formulated to maximize the system's worst-case secrecy rate, considering practical models of the outdated channel state information and IRS power consumption. We leverage deep reinforcement learning (DRL) to solve the problem by proposing a fast DRL algorithm, namely the deep post-decision state-deterministic policy gradient (DPDS-DPG) algorithm. In DPDS-DPG, the prior known system dynamics are exploited by integrating the PDS concept into the traditional deep DPG (DDPG) algorithm, resulting in faster learning convergence. Simulation results show a faster learning convergence of 50% for DPDS-DPG compared to DDPG, with a comparable achievable system secrecy rate. Additionally, the results demonstrate system secrecy rate gains of 52% and 35% when employing active IRS and hybrid IRS, respectively, over conventional passive IRS, thereby supporting secure communications.
引用
收藏
页码:2858 / 2869
页数:12
相关论文
共 50 条
  • [1] Deep Reinforcement Learning Powered IRS-Assisted Downlink NOMA
    Shehab, Muhammad
    Ciftler, Bekir S.
    Khattab, Tamer
    Abdallah, Mohamed M.
    Trinchero, Daniele
    [J]. IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 : 729 - 739
  • [2] Deep Reinforcement Learning for IRS-Assisted UAV Covert Communications
    Songjiao Bi
    Langtao Hu
    Quanjin Liu
    Jianlan Wu
    Rui Yang
    Lei Wu
    [J]. China Communications, 2023, 20 (12) : 131 - 141
  • [3] Deep Reinforcement Learning for Deception in IRS-assisted UAV Communications
    Olowononi, Felix O.
    Rawat, Danda B.
    Kamhoua, Charles A.
    Sadler, Brian M.
    [J]. Proceedings - IEEE Military Communications Conference MILCOM, 2022, 2022-November : 763 - 768
  • [4] Deep reinforcement learning for IRS-assisted UAV covert communications
    Bi, Songjiao
    Hu, Langtao
    Liu, Quanjin
    Wu, Jianlan
    Yang, Rui
    Wu, Lei
    [J]. CHINA COMMUNICATIONS, 2023, 20 (12) : 131 - 141
  • [5] Deep Reinforcement Learning for Deception in IRS-assisted UAV Communications
    Olowononi, Felix O.
    Rawat, Danda B.
    Kamhoua, Charles A.
    Sadler, Brian M.
    [J]. 2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,
  • [6] Deep Reinforcement Learning for Robust Beamforming in IRS-assisted Wireless Communications
    Lin, Jiaye
    Zout, Yuze
    Dong, Xiaoru
    Gong, Shimin
    Dinh Thai Hoang
    Niyato, Dusit
    [J]. 2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [7] IRS-Assisted Ambient Backscatter Communications Utilizing Deep Reinforcement Learning
    Jia, Xiaolun
    Zhou, Xiangyun
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (11) : 2374 - 2378
  • [8] Deep Learning Based Joint Beamforming Design in IRS-Assisted Secure Communications
    Zhang, Chi
    Liu, Yiliang
    Chen, Hsiao-Hwa
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (12) : 16861 - 16865
  • [9] Resource Allocation for IRS-Assisted Networks: A Deep Reinforcement Learning Approach
    Ahmad, Sohail
    Khan, Saud
    Khan, Komal S.
    Naeem, Faisal
    Tariq, Muhammad
    [J]. IEEE Communications Standards Magazine, 2023, 7 (03): : 48 - 55
  • [10] End-to-End Deep Learning IRS-assisted Communications Systems
    Alawad, Mohamad A.
    Hamdan, Mutasem Q.
    Hamdi, Khairi A.
    [J]. 2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,