Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications

被引:5
|
作者
Kurzyk, Agata [1 ]
Szwed-Georgiou, Aleksandra [2 ]
Pagacz, Joanna [1 ]
Antosik, Agnieszka [1 ]
Tymowicz-Grzyb, Paulina [1 ]
Gerle, Anna [1 ]
Szterner, Piotr [1 ]
Wlodarczyk, Marcin [2 ]
Plocinski, Przemyslaw [2 ]
Urbaniak, Mateusz M. [2 ,3 ,4 ]
Rudnicka, Karolina [2 ]
Biernat, Monika [1 ]
机构
[1] Inst Ceram & Bldg Mat, Lukasiewicz Res Network, Cementowa 8 St, PL-31983 Krakow, Poland
[2] Univ Lodz, Fac Biol & Environm Protect, Dept Immunol & Infect Biol, 12-16 Banacha St, PL-90237 Lodz, Poland
[3] Univ Lodz, Biomed Chem Doctoral Sch, 12-16 Banacha St, PL-90237 Lodz, Poland
[4] Polish Acad Sci, Lodz Inst, 12-16 Banacha St, PL-90237 Lodz, Poland
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
关键词
SINTERING TEMPERATURE; TRICALCIUM PHOSPHATE; THERMAL-STABILITY; HYDROXYAPATITE; MAGNESIUM; RESORPTION; MECHANISM; APATITES; SR; MG;
D O I
10.1038/s41598-023-42271-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nanohydroxyapatite (nanoHAP) is widely used in bone regeneration, but there is a need to enhance its properties to provide stimuli for cell commitment and osteoconduction. This study examines the effect of calcination at 1200 degrees C on the physicochemical and biological properties of nanoHAP doped with magnesium (Mg2+), strontium (Sr2+), and zinc (Zn2+). A synergistic effect of dual modification on nanoHAP biological properties was investigated. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET analysis, Fourier-transform spectroscopy, and thermal analysis methods. Furthermore, ion release tests and in vitro biological characterization, including cytocompatibility, reactive oxygen species production, osteoconductive potential and cell proliferation, were performed. The XRD results indicate that the ion substitution of nanoHAP has no effect on the apatite structure, and after calcination, beta-tricalcium phosphate (beta-TCP) is formed as an additional phase. SEM analysis showed that calcination induces the agglomeration of particles and changes in surface morphology. A decrease in the specific surface area and in the ion release rate was observed. Combining calcination and nanoHAP ion modification is beneficial for cell proliferation and osteoblast response and provide additional stimuli for cell commitment in bone regeneration.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications
    Agata Kurzyk
    Aleksandra Szwed-Georgiou
    Joanna Pagacz
    Agnieszka Antosik
    Paulina Tymowicz-Grzyb
    Anna Gerle
    Piotr Szterner
    Marcin Włodarczyk
    Przemysław Płociński
    Mateusz M. Urbaniak
    Karolina Rudnicka
    Monika Biernat
    Scientific Reports, 13 (1)
  • [2] Physical and biological characteristics of nanohydroxyapatite and bioactive glasses used for bone tissue engineering
    Yousefi, Azizeh-Mitra
    Oudadesse, Hassane
    Akbarzadeh, Rosa
    Wers, Eric
    Lucas-Girot, Anita
    NANOTECHNOLOGY REVIEWS, 2014, 3 (06) : 527 - 552
  • [3] Optimizing Nanohydroxyapatite Nanocomposites for Bone Tissue Engineering
    Lowe, Baboucarr
    Hardy, John G.
    Walsh, Laurence J.
    ACS OMEGA, 2020, 5 (01): : 1 - 9
  • [4] Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications
    Gopi, D.
    Nithiya, S.
    Shinyjoy, E.
    Kavitha, L.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2012, 92 : 194 - 200
  • [5] Characterization and biological properties of nanostructured clinoenstatite scaffolds for bone tissue engineering applications
    Bakhsheshi-Rad, H. R.
    Najafinezhad, A.
    Hadisi, Z.
    Iqbal, Nida
    Daroonparvar, M.
    Sharif, Safian
    Ismail, Ahmad Fauzi
    Akbari, M.
    RamaKrishna, Seeram
    Berto, F.
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 259
  • [6] Characterization and biological properties of nanostructured clinoenstatite scaffolds for bone tissue engineering applications
    Bakhsheshi-Rad, H.R.
    Najafinezhad, A.
    Hadisi, Z.
    Iqbal, Nida
    Daroonparvar, M.
    Sharif, Safian
    Ismail, Ahmad Fauzi
    Akbari, M.
    RamaKrishna, Seeram
    Berto, F.
    Materials Chemistry and Physics, 2021, 259
  • [7] Fabrication and characterization of nanohydroxyapatite/chitosan/ decellularized placenta scaffold for bone tissue engineering applications
    Khazaei, Mozafar
    Bozorgi, Maryam
    Rezakhani, Leila
    Bozorgi, Azam
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 281
  • [8] Physicochemical properties and cytocompatibility assessment of non-degradable scaffolds for bone tissue engineering applications
    Pereira, H.
    Cengiz, I. F.
    Maia, F. R.
    Bartolomeu, F.
    Oliveira, J. M.
    Reis, R. L.
    Silva, F. S.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 112
  • [9] Evaluation of Synthesized Nanohydroxyapatite-Nanocellulose Composites as Biocompatible Scaffolds for Applications in Bone Tissue Engineering
    Herdocia-Lluberes, Claudia S.
    Laboy-Lopez, Simara
    Morales, Stefannie
    Gonzalez-Robles, Tania J.
    Gonzalez-Feliciano, Joes A.
    Nicolau, Eduardo
    JOURNAL OF NANOMATERIALS, 2015, 2015
  • [10] Development of a biodegradable composite scaffold for bone tissue engineering: Physicochemical, topographical, mechanical, degradation, and biological properties
    Navarro, M.
    Aparicio, C.
    Charles-Harris, M.
    Ginebra, M. P.
    Engel, E.
    Planell, J. A.
    ORDERED POLYMERIC NANOSTRUCTURES AT SURFACES, 2006, 200 : 209 - 231