Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications

被引:5
|
作者
Kurzyk, Agata [1 ]
Szwed-Georgiou, Aleksandra [2 ]
Pagacz, Joanna [1 ]
Antosik, Agnieszka [1 ]
Tymowicz-Grzyb, Paulina [1 ]
Gerle, Anna [1 ]
Szterner, Piotr [1 ]
Wlodarczyk, Marcin [2 ]
Plocinski, Przemyslaw [2 ]
Urbaniak, Mateusz M. [2 ,3 ,4 ]
Rudnicka, Karolina [2 ]
Biernat, Monika [1 ]
机构
[1] Inst Ceram & Bldg Mat, Lukasiewicz Res Network, Cementowa 8 St, PL-31983 Krakow, Poland
[2] Univ Lodz, Fac Biol & Environm Protect, Dept Immunol & Infect Biol, 12-16 Banacha St, PL-90237 Lodz, Poland
[3] Univ Lodz, Biomed Chem Doctoral Sch, 12-16 Banacha St, PL-90237 Lodz, Poland
[4] Polish Acad Sci, Lodz Inst, 12-16 Banacha St, PL-90237 Lodz, Poland
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
关键词
SINTERING TEMPERATURE; TRICALCIUM PHOSPHATE; THERMAL-STABILITY; HYDROXYAPATITE; MAGNESIUM; RESORPTION; MECHANISM; APATITES; SR; MG;
D O I
10.1038/s41598-023-42271-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nanohydroxyapatite (nanoHAP) is widely used in bone regeneration, but there is a need to enhance its properties to provide stimuli for cell commitment and osteoconduction. This study examines the effect of calcination at 1200 degrees C on the physicochemical and biological properties of nanoHAP doped with magnesium (Mg2+), strontium (Sr2+), and zinc (Zn2+). A synergistic effect of dual modification on nanoHAP biological properties was investigated. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET analysis, Fourier-transform spectroscopy, and thermal analysis methods. Furthermore, ion release tests and in vitro biological characterization, including cytocompatibility, reactive oxygen species production, osteoconductive potential and cell proliferation, were performed. The XRD results indicate that the ion substitution of nanoHAP has no effect on the apatite structure, and after calcination, beta-tricalcium phosphate (beta-TCP) is formed as an additional phase. SEM analysis showed that calcination induces the agglomeration of particles and changes in surface morphology. A decrease in the specific surface area and in the ion release rate was observed. Combining calcination and nanoHAP ion modification is beneficial for cell proliferation and osteoblast response and provide additional stimuli for cell commitment in bone regeneration.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Development of silk fibroin/nanohydroxyapatite composite hydrogels for bone tissue engineering
    Ribeiro, Marta
    de Moraes, Mariana A.
    Beppu, Marisa M.
    Garcia, Monica P.
    Fernandes, Maria H.
    Monteiro, Fernando J.
    Ferraz, Maria P.
    EUROPEAN POLYMER JOURNAL, 2015, 67 : 66 - 77
  • [22] Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering
    Thein-Han, W. W.
    Misra, R. D. K.
    ACTA BIOMATERIALIA, 2009, 5 (04) : 1182 - 1197
  • [23] Biomimetic highly porous nanocellulose–nanohydroxyapatite scaffolds for bone tissue engineering
    Jannika T. Korkeamäki
    Ahmad Rashad
    Kaia Berstad
    Florian Weber
    Kristin Syverud
    Håvard Jostein Haugen
    Kamal Mustafa
    Cellulose, 2024, 31 : 2503 - 2521
  • [24] Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering
    Thomas, V
    Jagani, S
    Johnson, K
    Jose, MV
    Dean, DR
    Vohra, YK
    Nyairo, E
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (02) : 487 - 493
  • [25] Marine biological waste as a source of hydroxyapatite for bone tissue engineering applications
    Borciani, Giorgia
    Fischetti, Tiziana
    Ciapetti, Gabriela
    Montesissa, Matteo
    Baldini, Nicola
    Graziani, Gabriela
    CERAMICS INTERNATIONAL, 2023, 49 (02) : 1572 - 1584
  • [26] Biological effects, properties and tissue engineering applications of polyhydroxyalkanoates: A review
    Fu, Zeyu
    Qiu, He
    Xu, Yuan
    Tan, Chang
    Wang, Hang
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 293
  • [27] Nanohydroxyapatite Incorporated Electrospun Polycaprolactone/Polycaprolactone-Polyethyleneglycol-Polycaprolactone Blend Scaffold for Bone Tissue Engineering Applications
    Remya, K. R.
    Joseph, Jasmin
    Mani, Susan
    John, Annie
    Varma, H. K.
    Ramesh, P.
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2013, 9 (09) : 1483 - 1494
  • [28] Physicochemical and biological properties of nanohydroxyapatite grafted with star-shaped poly(ε-caprolactone)
    Kairalla, Eleni Cristina
    Bressiani, Jose Carlos
    de Almeida Bressiani, Ana Helena
    de Carvalho Pinto Ribela, Maria Tereza
    Higa, Olga Zazuco
    de Queiroz, Alvaro Antonio Alencar
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2022, 33 (18) : 2353 - 2384
  • [29] Biodegradable Polyphosphazene-Nanohydroxyapatite Composite Nanofibers: Scaffolds for Bone Tissue Engineering
    Bhattacharyya, Subhabrata
    Kumbar, Sangamesh G.
    Khan, Yusuf M.
    Nair, Lakshmi S.
    Singh, Anurima
    Krogman, Nick R.
    Brown, Paul W.
    Allcock, Harry R.
    Laurencin, Cato T.
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2009, 5 (01) : 69 - 75
  • [30] Bio-hybrid scaffolds for bone tissue engineering: Nanohydroxyapatite/chitosan composites
    Palazzo, Barbara
    Izzo, D.
    Scalera, F.
    Cancelli, A.N.
    Gervaso, F.
    Key Engineering Materials, 2015, 631 : 300 - 305