Optimizing Nanohydroxyapatite Nanocomposites for Bone Tissue Engineering

被引:86
|
作者
Lowe, Baboucarr [1 ]
Hardy, John G. [2 ,3 ]
Walsh, Laurence J. [1 ]
机构
[1] Univ Queensland, Sch Dent, Brisbane, Qld 4006, Australia
[2] Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
[3] Univ Lancaster, Mat Sci Inst, Lancaster LA1 4YB, England
来源
ACS OMEGA | 2020年 / 5卷 / 01期
关键词
HYDROXYAPATITE-FUCOIDAN NANOCOMPOSITES; NANO-HYDROXYAPATITE; IN-VITRO; BIOMEDICAL APPLICATIONS; SCAFFOLDS; REGENERATION; HYDROGELS; BIOCOMPATIBILITY; NANOTECHNOLOGY; NANOMATERIALS;
D O I
10.1021/acsomega.9b02917
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bone tissue engineering involves the combined use of materials with functional properties to regenerate bone. Nanohydroxyapatite (nHA) can influence the behavior of cells. The functional and structural properties of nHA can be controlled during nanoparticle synthesis. This review defines the relationship between the attributes of nHA nanoparticles and their biological effects, focusing on biocompatibility, surface-area-to-volume ratio, bonding chemistry, and substrate functionality. The paper explores how these aspects have been applied in the development of scaffolds for the repair of damaged bone or regeneration of missing bone.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications
    Li, Yuchao
    Liao, Chengzhu
    Tjong, Sie Chin
    NANOMATERIALS, 2019, 9 (04)
  • [2] Nanohydroxyapatite/graphene oxide nanocomposites modified with synthetic polymers: promising materials for bone tissue engineering applications
    Heshmatpour, Felora
    Haghbin, Saeedeh
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2021, 70 (08) : 585 - 591
  • [3] Optimizing Chitosan/Collagen Type I/Nanohydroxyapatite Cross-linked Porous Scaffolds for Bone Tissue Engineering
    Ayşe Karakeçili
    Serdar Korpayev
    Kaan Orhan
    Applied Biochemistry and Biotechnology, 2022, 194 : 3843 - 3859
  • [4] Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering
    Boissard, C. I. R.
    Bourban, P. -E.
    Tami, A. E.
    Alini, M.
    Eglin, D.
    ACTA BIOMATERIALIA, 2009, 5 (09) : 3316 - 3327
  • [5] Optimizing Chitosan/Collagen Type I/Nanohydroxyapatite Cross-linked Porous Scaffolds for Bone Tissue Engineering
    Karakecili, Ayse
    Korpayev, Serdar
    Orhan, Kaan
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2022, 194 (9) : 3843 - 3859
  • [6] Development of silk fibroin/nanohydroxyapatite composite hydrogels for bone tissue engineering
    Ribeiro, Marta
    de Moraes, Mariana A.
    Beppu, Marisa M.
    Garcia, Monica P.
    Fernandes, Maria H.
    Monteiro, Fernando J.
    Ferraz, Maria P.
    EUROPEAN POLYMER JOURNAL, 2015, 67 : 66 - 77
  • [7] Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering
    Thein-Han, W. W.
    Misra, R. D. K.
    ACTA BIOMATERIALIA, 2009, 5 (04) : 1182 - 1197
  • [8] Biomimetic highly porous nanocellulose–nanohydroxyapatite scaffolds for bone tissue engineering
    Jannika T. Korkeamäki
    Ahmad Rashad
    Kaia Berstad
    Florian Weber
    Kristin Syverud
    Håvard Jostein Haugen
    Kamal Mustafa
    Cellulose, 2024, 31 : 2503 - 2521
  • [9] Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering
    Thomas, V
    Jagani, S
    Johnson, K
    Jose, MV
    Dean, DR
    Vohra, YK
    Nyairo, E
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (02) : 487 - 493
  • [10] Biodegradable Polyphosphazene-Nanohydroxyapatite Composite Nanofibers: Scaffolds for Bone Tissue Engineering
    Bhattacharyya, Subhabrata
    Kumbar, Sangamesh G.
    Khan, Yusuf M.
    Nair, Lakshmi S.
    Singh, Anurima
    Krogman, Nick R.
    Brown, Paul W.
    Allcock, Harry R.
    Laurencin, Cato T.
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2009, 5 (01) : 69 - 75