TLDC: Tomato Leaf Disease Classification Using Deep Learning and Image Segmentation

被引:1
|
作者
Sahu, Priyanka [1 ]
Chug, Anuradha [1 ]
Singh, Amit Prakash [1 ]
Singh, Dinesh [2 ]
机构
[1] Guru Gobind Singh Indraprastha Univ, Univ Sch Informat Commun & Technol, New Delhi, India
[2] Indian Agr Res Inst, Div Plant Pathol, New Delhi, India
关键词
Convolutional neural network; Deep learning; Tomato plant; Classification; Image pre-processing; Disease inoculation;
D O I
10.1007/978-981-19-2821-5_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning (DL) has made significant progress in identifying and classifying plant diseases. The convolutional neural network (CNN) model was utilized to classify diseased and healthy tomato plant leaves for this study. Seven predominant DL models, namely LeNet 5, AlexNet, VGG19, Inception Net V3, ResNet50, DenseNet 121, and Efficient Net BO have been used for tomato leaves disease classification. Deep feature extraction and fine-tuning strategies were utilized to adapt these DL models to the specific task of classification. The obtained features using deep feature extraction were then classified by fully connected layers of the CNNs. The experiments were carried out using the image data acquired from the Indian Agricultural Research Institute, India. The dataset consists of diseased and healthy tomato leaf images with a total count of 155 images. Data augmentation was used to increase the dataset size. Furthermore, three segmentation algorithms were also applied to remove the background and highlight the deep features. In this study, a comparison of the above-mentioned CNNs has been carried out to show the accuracy results achieved on the collected dataset. The evaluation results show that deep feature extraction with image segmentation techniques produced better results (up to 100% classification accuracy) than without segmentation. The outcome of this research will have a substantial impact on tomato disease prediction and early prevention.
引用
收藏
页码:401 / 408
页数:8
相关论文
共 50 条
  • [21] Novel segmentation and classification algorithm for detection of tomato leaf disease
    Kumar, R. Raja
    Athimoolam, Jegadeesh
    Appathurai, Ahilan
    Rajendiran, Surendiran
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (12):
  • [22] Leaf disease identification and classification using optimized deep learning
    Abd Algani Y.M.
    Marquez Caro O.J.
    Robladillo Bravo L.M.
    Kaur C.
    Al Ansari M.S.
    Kiran Bala B.
    Measurement: Sensors, 2023, 25
  • [23] Land Cover Classification Using Sematic Image Segmentation with Deep Learning
    Lee, Seonghyeok
    Kim, Jinsoo
    KOREAN JOURNAL OF REMOTE SENSING, 2019, 35 (02) : 279 - 288
  • [24] Using Deep Learning in Image hyper spectral Segmentation, Classification and Detection
    Zhao, Xiuying
    Su, Zhenyu
    FOURTH SEMINAR ON NOVEL OPTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATION, 2018, 10697
  • [25] Automated SAR Image Segmentation and Classification Using Modified Deep Learning
    Srinitya, G.
    Sharmila, D.
    Logeswari, S.
    Raja, S. Daniel Madan
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (01)
  • [26] Bayesian optimized multimodal deep hybrid learning approach for tomato leaf disease classification
    Khan, Bodruzzaman
    Das, Subhabrata
    Fahim, Nafis Shahid
    Banerjee, Santanu
    Khan, Salma
    Al-Sadoon, Mohammad Khalid
    Al-Otaibi, Hamad S.
    Islam, Abu Reza Md. Towfiqul
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [27] Automated tomato leaf disease classification using transfer learning-based deep convolution neural network
    Rajasekaran Thangaraj
    S. Anandamurugan
    Vishnu Kumar Kaliappan
    Journal of Plant Diseases and Protection, 2021, 128 : 73 - 86
  • [28] Automated tomato leaf disease classification using transfer learning-based deep convolution neural network
    Thangaraj, Rajasekaran
    Anandamurugan, S.
    Kaliappan, Vishnu Kumar
    JOURNAL OF PLANT DISEASES AND PROTECTION, 2021, 128 (01) : 73 - 86
  • [29] A Tomato Leaf Diseases Classification Method Based on Deep Learning
    Jiang, Ding
    Li, Fudong
    Yang, Yuequan
    Yu, Song
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 1446 - 1450
  • [30] Tomato Plant Disease Classification Using Deep Learning Architectures: A Review
    Shruthi, U.
    Nagaveni, V
    Arvind, C. S.
    Sunil, G. L.
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER ENGINEERING AND COMMUNICATION SYSTEMS, ICACECS 2021, 2022, : 153 - 169