TLDC: Tomato Leaf Disease Classification Using Deep Learning and Image Segmentation

被引:1
|
作者
Sahu, Priyanka [1 ]
Chug, Anuradha [1 ]
Singh, Amit Prakash [1 ]
Singh, Dinesh [2 ]
机构
[1] Guru Gobind Singh Indraprastha Univ, Univ Sch Informat Commun & Technol, New Delhi, India
[2] Indian Agr Res Inst, Div Plant Pathol, New Delhi, India
关键词
Convolutional neural network; Deep learning; Tomato plant; Classification; Image pre-processing; Disease inoculation;
D O I
10.1007/978-981-19-2821-5_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning (DL) has made significant progress in identifying and classifying plant diseases. The convolutional neural network (CNN) model was utilized to classify diseased and healthy tomato plant leaves for this study. Seven predominant DL models, namely LeNet 5, AlexNet, VGG19, Inception Net V3, ResNet50, DenseNet 121, and Efficient Net BO have been used for tomato leaves disease classification. Deep feature extraction and fine-tuning strategies were utilized to adapt these DL models to the specific task of classification. The obtained features using deep feature extraction were then classified by fully connected layers of the CNNs. The experiments were carried out using the image data acquired from the Indian Agricultural Research Institute, India. The dataset consists of diseased and healthy tomato leaf images with a total count of 155 images. Data augmentation was used to increase the dataset size. Furthermore, three segmentation algorithms were also applied to remove the background and highlight the deep features. In this study, a comparison of the above-mentioned CNNs has been carried out to show the accuracy results achieved on the collected dataset. The evaluation results show that deep feature extraction with image segmentation techniques produced better results (up to 100% classification accuracy) than without segmentation. The outcome of this research will have a substantial impact on tomato disease prediction and early prevention.
引用
收藏
页码:401 / 408
页数:8
相关论文
共 50 条
  • [11] Classification of Plant Leaf Disease Using Deep Learning
    Indira K.
    Mallika H.
    Journal of The Institution of Engineers (India): Series B, 2024, 105 (03) : 609 - 620
  • [12] A robust deep learning approach for tomato plant leaf disease localization and classification
    Nawaz, Marriam
    Nazir, Tahira
    Javed, Ali
    Masood, Momina
    Rashid, Junaid
    Kim, Jungeun
    Hussain, Amir
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [13] Synergistic use of handcrafted and deep learning features for tomato leaf disease classification
    Mohamed Bouni
    Badr Hssina
    Khadija Douzi
    Samira Douzi
    Scientific Reports, 14 (1)
  • [14] A Deep Learning-Based Approach in Classification and Validation of Tomato Leaf Disease
    Wagle, Shivali Amit
    Harikrishnan, R.
    TRAITEMENT DU SIGNAL, 2021, 38 (03) : 699 - 709
  • [15] A robust deep learning approach for tomato plant leaf disease localization and classification
    Marriam Nawaz
    Tahira Nazir
    Ali Javed
    Momina Masood
    Junaid Rashid
    Jungeun Kim
    Amir Hussain
    Scientific Reports, 12
  • [16] A Lightweight Deep Learning-Based Model for Tomato Leaf Disease Classification
    Ullah, Naeem
    Khan, Javed Ali
    Almakdi, Sultan
    Alshehri, Mohammed S.
    Al Qathrady, Mimonah
    Aldakheel, Eman Abdullah
    Khafaga, Doaa Sami
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (03): : 3969 - 3992
  • [17] Tomato leaf diseases classification using image processing and weighted ensemble learning
    Javidan, Seyed Mohamad
    Banakar, Ahmad
    Vakilian, Keyvan Asefpour
    Ampatzidis, Yiannis
    AGRONOMY JOURNAL, 2024, 116 (03) : 1029 - 1049
  • [18] Tomato Leaf Disease Classification with Image Augmentation Methods
    Ham, Hyun-Sik
    Cho, Hyun-Chong
    Ham, Hyun-sik (hyuncho@kangwon.ac.kr), 1600, Korean Institute of Electrical Engineers (70): : 184 - 189
  • [19] Image Classification and Semantic Segmentation with Deep Learning
    Quazi, Saiman
    Musa, Sarhan M.
    6TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (ICRAIE), 2021,
  • [20] Using Deep Learning for Image-Based Different Degrees of Ginkgo Leaf Disease Classification
    Li, Kaizhou
    Lin, Jianhui
    Liu, Jinrong
    Zhao, Yandong
    INFORMATION, 2020, 11 (02)