Comprehensive understanding of the thriving electrocatalytic nitrate/nitrite reduction to ammonia under ambient conditions

被引:20
|
作者
Zhao, Xinying [1 ]
Jiang, Yuzhuo [1 ]
Wang, Mengfan [1 ]
Huan, Yunfei [2 ]
Cheng, Qiyang [1 ]
He, Yanzheng [1 ]
Qian, Tao [2 ]
Yan, Chenglin [1 ,3 ]
机构
[1] Soochow Univ, Coll Energy, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
[2] Nantong Univ, Sch Chem & Chem Engn, Nantong 226019, Jiangsu, Peoples R China
[3] Changzhou Univ, Sch Petrochem Engn, Changzhou 213164, Jiangsu, Peoples R China
来源
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Electrocatalytic nitrate reduction; Electrocatalytic nitrite reduction; Ammonia synthesis; Pollutant removal; Electrosynthesis; ELECTROCHEMICAL NITRATE REDUCTION; NITRITE REDUCTION; NITROGEN REDUCTION; ELECTROREDUCTION; ADSORPTION; CATALYSTS; GRAPHENE; ELECTROSYNTHESIS; NANOPARTICLES; ELECTRODES;
D O I
10.1016/j.jechem.2023.12.024
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Ammonia (NH3) is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium. At present, NH3 synthesis is highly dependent on the conventional Haber-Bosch process that operates under harsh conditions, which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide. As an alternative, electrosynthesis is a prospective method for producing NH3 under normal temperature and pressure conditions. Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions, the low solubility of N-2 and high N=N cracking energy render the achievements of high NH3 yield rate and Faradaic efficiency difficult. Nitrate and nitrite (NOx) are common N-containing pollutants. Due to their high solubilities and low dissociation energy of N=O, NOx are ideal raw materials for NH3 production. Therefore, electrocatalytic NOx reduction to NH3 (eNO(x)RR) is a prospective strategy to simultaneously realise environmental protection and NH3 synthesis. This review offers a comprehensive understanding of the thriving eNO(x)RR under ambient conditions. At first, the popular theory and mechanism of eNO(x)RR and a summary of the measurement system and evaluation criteria are introduced. Thereafter, various strategies for developing NOx reduction catalysts are systematically presented and discussed. Finally, the challenges and possible prospects of electrocatalytic NOx reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH3 in the future. (C) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:459 / 483
页数:25
相关论文
共 50 条
  • [31] Ambient dinitrogen electrocatalytic reduction for ammonia synthesis
    Chen, Aling
    Xia, Bao Yu
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (41) : 23416 - 23431
  • [32] Electrocatalytic Ammonia Oxidation to Nitrite and Nitrate with NiOOH-Ni
    Liu, Hanwen
    Yang, Cheng-Jie
    Dong, Chung-Li
    Wang, Jiashu
    Zhang, Xin
    Lyalin, Andrey
    Taketsugu, Tetsuya
    Chen, Zhiqi
    Guan, Daqin
    Xu, Xiaomin
    Shao, Zongping
    Huang, Zhenguo
    ADVANCED ENERGY MATERIALS, 2024, 14 (42)
  • [33] Tandem Electrocatalytic Nitrate Reduction to Ammonia on MBenes
    Zhang, Guike
    Li, Xiaotian
    Chen, Kai
    Guo, Yali
    Ma, Dongwei
    Chu, Ke
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (13)
  • [34] Electrocatalytic Nitrate Reduction for Sustainable Ammonia Production
    van Langevelde, Phebe H.
    Katsounaros, Ioannis
    Koper, Marc T. M.
    JOULE, 2021, 5 (02) : 290 - 294
  • [35] Electrochemical macrokinetics analysis of nitrite electrocatalytic reduction to ammonia
    Lv, Yang
    Teng, Wenkai
    Li, Yang
    Ou, Honghui
    Xie, Tao
    Yan, Xiaoqing
    Yang, Guidong
    AICHE JOURNAL, 2024, 70 (12)
  • [36] Electrocatalytic nitrate reduction to ammonia by sea-urchin-like CoNiO2 under mild conditions
    Zhang, Yanli
    Xiong, Jiuqing
    Liu, Bingping
    Yan, Shihai
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (06):
  • [37] Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes
    Wang, Jing
    Feng, Tao
    Chen, Jiaxin
    Ramalingam, Vinoth
    Li, Zhongxiao
    Kabtamu, Daniel Manaye
    He, Jr-Hau
    Fang, Xiaosheng
    NANO ENERGY, 2021, 86
  • [38] High-Performance Electrochemical Nitrate Reduction to Ammonia under Ambient Conditions Using a FeOOH Nanorod Catalyst
    Liu, Qin
    Liu, Qian
    Xie, Lisi
    Ji, Yuyao
    Li, Tingshuai
    Zhang, Bing
    Li, Na
    Tang, Bo
    Liu, Yang
    Gao, Shuyan
    Luo, Yonglan
    Yu, Lingmin
    Kong, Qingquan
    Sun, Xuping
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (15) : 17312 - 17318
  • [39] Aqueous electrocatalytic N2 reduction under ambient conditions
    Cao, Na
    Zheng, Gengfeng
    NANO RESEARCH, 2018, 11 (06) : 2992 - 3008
  • [40] Aqueous electrocatalytic N2 reduction under ambient conditions
    Na Cao
    Gengfeng Zheng
    Nano Research, 2018, 11 : 2992 - 3008