Utilizing Data-Driven Optimization to Automate the Parametrization of Kinetic Monte Carlo Models

被引:5
|
作者
Kouroudis, Ioannis [1 ]
Goesswein, Manuel [1 ]
Gagliardi, Alessio [1 ]
机构
[1] Tech Univ Munich, Dept Elect & Comp Engn, D-85748 Garching, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2023年 / 127卷 / 28期
基金
欧盟地平线“2020”;
关键词
STOCHASTIC SIMULATION; CRYSTAL-GROWTH; TRANSPORT;
D O I
10.1021/acs.jpca.3c02482
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kinetic Monte Carlo (kMC) simulations are a popular toolto investigatethe dynamic behavior of stochastic systems. However, one major limitationis their relatively high computational costs. In the last three decades,significant effort has been put into developing methodologies to makekMC more efficient, resulting in an enhanced runtime efficiency. Nevertheless,kMC models remain computationally expensive. This is in particularan issue in complex systems with several unknown input parameterswhere often most of the simulation time is required for finding asuitable parametrization. A potential route for automating the parametrizationof kinetic Monte Carlo models arises from coupling kMC with a data-drivenapproach. In this work, we equip kinetic Monte Carlo simulations witha feedback loop consisting of Gaussian Processes (GPs) and Bayesianoptimization (BO) to enable a systematic and data-efficient inputparametrization. We utilize the results from fast-converging kMC simulationsto construct a database for training a cheap-to-evaluate surrogatemodel based on Gaussian processes. Combining the surrogate model witha system-specific acquisition function enables us to apply Bayesianoptimization for the guided prediction of suitable input parameters.Thus, the amount of trial simulation runs can be considerably reducedfacilitating an efficient utilization of arbitrary kMC models. Weshowcase the effectiveness of our methodology for a physical processof growing industrial relevance: the space-charge layer formationin solid-state electrolytes as it occurs in all-solid-state batteries.Our data-driven approach requires only 1-2 iterations to reconstructthe input parameters from different baseline simulations within thetraining data set. Moreover, we show that the methodology is evencapable of accurately extrapolating into regions outside the trainingdata set which are computationally expensive for direct kMC simulation.Concluding, we demonstrate the high accuracy of the underlying surrogatemodel via a full parameter space investigation eventually making theoriginal kMC simulation obsolete.
引用
收藏
页码:5967 / 5978
页数:12
相关论文
共 50 条
  • [21] Improved Data-Driven Trajectory Optimization Method Utilizing Deep Trajectory Generation
    Gui, Xuhao
    Zhang, Junfeng
    Tang, Xinmin
    Bao, Jie
    [J]. JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2024,
  • [22] Data-Driven Benchmarking of Building Energy Efficiency Utilizing Statistical Frontier Models
    Kavousian, Amir
    Rajagopal, Ram
    [J]. JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2014, 28 (01) : 79 - 88
  • [23] DATA-DRIVEN NONSMOOTH OPTIMIZATION
    Banert, Sebastian
    Ringh, Axel
    Adler, Jonas
    Karlsson, Johan
    Oktem, Ozan
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 102 - 131
  • [24] Data-driven robust optimization
    Bertsimas, Dimitris
    Gupta, Vishal
    Kallus, Nathan
    [J]. MATHEMATICAL PROGRAMMING, 2018, 167 (02) : 235 - 292
  • [25] Data-driven optimization in management
    Consigli, Giorgio
    Kleywegt, Anton
    [J]. COMPUTATIONAL MANAGEMENT SCIENCE, 2019, 16 (03) : 371 - 374
  • [26] Data-driven optimization in management
    Giorgio Consigli
    Anton Kleywegt
    [J]. Computational Management Science, 2019, 16 : 371 - 374
  • [27] Data-driven robust optimization
    Dimitris Bertsimas
    Vishal Gupta
    Nathan Kallus
    [J]. Mathematical Programming, 2018, 167 : 235 - 292
  • [28] Generating Data-Driven Models from Molecular-Level Kinetic Models: A Kinetic Model Speedup Strategy
    Agarwal, Pratyush
    Klein, Michael T.
    [J]. ENERGY & FUELS, 2019, 33 (10) : 10372 - 10379
  • [29] Data-driven Stellar Models
    Green, Gregory M.
    Rix, Hans-Walter
    Tschesche, Leon
    Finkbeiner, Douglas
    Zucker, Catherine
    Schlafly, Edward F.
    Rybizki, Jan
    Fouesneau, Morgan
    Andrae, Rene
    Speagle, Joshua
    [J]. ASTROPHYSICAL JOURNAL, 2021, 907 (01):
  • [30] Data-driven choice of the smoothing parametrization for kernel density estimators
    Chacon, Jose E.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (02): : 249 - 265