Experimental and Numerical Study of the Influence of Pre-Existing Impact Damage on the Low-Velocity Impact Response of CFRP Panels

被引:7
|
作者
Rezasefat, Mohammad [1 ]
Beligni, Alessio [1 ]
Sbarufatti, Claudio [1 ]
Amico, Sandro Campos [2 ]
Manes, Andrea [1 ]
机构
[1] Politecn Milan, Dipartimento Meccan, Via Masa 1, I-20156 Milan, Italy
[2] Fed Univ Rio Grande, PPGE3M, BR-91501970 Porto Alegre, Brazil
关键词
CFRP; Puck failure criterion; low-velocity impact; pre-existing damage; numerical simulation; DYNAMIC PROGRESSIVE FAILURE; FINITE-ELEMENT-ANALYSIS; COMPOSITES; BEHAVIOR; GLASS; ACCUMULATION; SIMULATION; EVOLUTION; THICKNESS; STRENGTH;
D O I
10.3390/ma16030914
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents an experimental and numerical investigation on the influence of pre-existing impact damage on the low-velocity impact response of Carbon Fiber Reinforced Polymer (CFRP). A continuum damage mechanics-based material model was developed by defining a user-defined material model in Abaqus/Explicit. The model employed the action plane strength of Puck for the damage initiation criterion together with a strain-based progressive damage model. Initial finite element simulations at the single-element level demonstrated the validity and capability of the damage model. More complex models were used to simulate tensile specimens, coupon specimens, and skin panels subjected to low-velocity impacts, being validated against experimental data at each stage. The effect of non-central impact location showed higher impact peak forces and bigger damage areas for impacts closer to panel boundaries. The presence of pre-existing damage close to the impact region leading to interfering delamination areas produced severe changes in the mechanical response, lowering the impact resistance on the panel for the second impact, while for non-interfering impacts, the results of the second impact were similar to the impact of a pristine specimen.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Experimental and numerical investigation on low-velocity impact damage and parametric study of composite rotor blades
    Gong, Xin
    Cheng, Xiaoquan
    Zhuang, Qikai
    Cheng, Yujia
    Guo, Xin
    Huang, Wenjun
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024,
  • [22] Experimental and numerical studies on the low-velocity impact response of orthogrid epoxy panels reinforced with short plant fibers
    Hamamousse, K.
    Sereir, Z.
    Benzidane, R.
    Gehring, F.
    Gomina, M.
    Poilane, C.
    COMPOSITE STRUCTURES, 2019, 211 : 469 - 480
  • [23] Experimental Investigation on the Low-Velocity Impact Response of Tandem Nomex Honeycomb Sandwich Panels
    Fan, Jinbo
    Li, Penghui
    Guo, Weiqi
    Zhao, Xiuguo
    Su, Chen
    Xu, Xinxi
    POLYMERS, 2023, 15 (02)
  • [24] Dynamic response and failure of CFRP Kagome lattice core sandwich panels subjected to low-velocity impact
    Li, Jianfeng
    Zhang, Wei
    Wang, Zhipeng
    Wang, Qiang
    Wu, Tianxing
    Qin, Qinghua
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2023, 181
  • [25] Experimental evaluation of the low-velocity impact damage resistance of CFRP tubes with integrated rubber layer
    Stelldinger, E.
    Kuehhorn, A.
    Kober, M.
    COMPOSITE STRUCTURES, 2016, 139 : 30 - 35
  • [26] Study on the Low-Velocity Impact Response and Damage Mechanisms of Thermoplastic Composites
    Han, Liu
    Qi, Hui
    Yang, Jinshui
    Chu, Fuqing
    Lin, Changliang
    Liu, Pingan
    Zhang, Qian
    POLYMERS, 2024, 16 (06)
  • [27] Low-velocity impact response and damage in composite materials
    Sankar, BV
    FRACTURE OF COMPOSITES, 1996, 120- : 549 - 581
  • [28] Damage prediction in composite sandwich panels subjected to low-velocity impact
    Feng, D.
    Aymerich, F.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2013, 52 : 12 - 22
  • [29] Experiments and numerical simulations of low-velocity impact of sandwich composite panels
    Zhang, Taotao
    Yan, Ying
    Li, Jianfeng
    POLYMER COMPOSITES, 2017, 38 (04) : 646 - 656
  • [30] Influence of various damage mechanisms on the low-velocity impact response of composite laminates
    Zou, Xionghui
    Gao, Weicheng
    Xi, Wei
    POLYMER COMPOSITES, 2024, 45 (01) : 722 - 737