Experimental and numerical investigation on low-velocity impact damage and parametric study of composite rotor blades

被引:7
|
作者
Gong, Xin [1 ,2 ]
Cheng, Xiaoquan [1 ,2 ]
Zhuang, Qikai [1 ]
Cheng, Yujia [1 ]
Guo, Xin [1 ]
Huang, Wenjun [3 ]
机构
[1] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Ningbo Inst Technol, Ningbo, Peoples R China
[3] AVIC China Helicopter Res & Dev Inst, Jingdezhen 333001, Peoples R China
关键词
Composite helicopter rotor blade; finite element model; low-velocity impact; damage mechanism; MIXED-MODE DELAMINATION; FRACTURE-TOUGHNESS; PROGRESSIVE DAMAGE; COHESIVE MODEL; BEHAVIOR;
D O I
10.1080/15376494.2024.2377814
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modern helicopter rotor blades are made of composite materials. Due to the harsh service environment, the blades may be impacted by hail and other falling objects at low velocity. The damage behavior of composite rotor blades subjected to low-velocity impact is studied here. Low-velocity impact experiment is conducted on a composite helicopter rotor blade, and the impact force and the damage are measured. Based on the experiment, a finite element model is developed and validated to predict the impact damage of the blade. With the model, a parametric study is performed to investigate the effects of impact energy, impact locations, and foam core on impact responses of the composite blades. The results show that the rib is the most vulnerable part to damage, associated with severe deformation, and delamination rapid expanding under low-velocity impact. The foam crush region is close to the blade top surface below the impact point. The interface between the skin and internal part is especially sensitive to increase in impact energy. Impacts near the leading edge produce higher impact force, while impacts near the trailing edge cause large deformation and small impact force. Better impact performance will be achieved when modulus and density of the foam are increased.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] NUMERICAL AND EXPERIMENTAL STUDY FOR DAMAGE CHARACTERIZATION OF COMPOSITE LAMINATES SUBJECTED TO LOW-VELOCITY IMPACT
    Du, Jiangtao
    Tie, Ying
    Li, Cheng
    Zhou, Xihui
    MATERIALS PHYSICS AND MECHANICS, 2016, 27 (02): : 195 - 204
  • [2] An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates
    Tuo, Hongliang
    Lu, Zhixian
    Ma, Xiaoping
    Zhang, Chao
    Chen, Shuwen
    COMPOSITES PART B-ENGINEERING, 2019, 167 : 329 - 341
  • [3] Experimental and numerical study of low-velocity impact damage in sandwich panel with UHMWPE composite facings
    Yang, Bin
    Zhou, Qi
    Lee, Juhyeong
    Li, Yan
    Fu, Kunkun
    Yang, Dongmin
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 284
  • [4] Numerical investigation of the low-velocity impact damage resistance and tolerance of composite laminates with preloads
    Zhang, Di
    Zhang, Wenxin
    Zhou, Jin
    Zheng, Xitao
    Wang, Jizhen
    Liu, Haibao
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 142
  • [5] Numerical simulation of low-velocity impact damage on stitched composite laminates
    State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Fuhe Cailiao Xuebao, 3 (715-724):
  • [6] Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact
    Zhang, Xiaoyu
    Xu, Fei
    Zang, Yuyan
    Feng, Wei
    COMPOSITE STRUCTURES, 2020, 236
  • [7] Experimental analysis and simulation of low-velocity impact damage of composite laminates
    Falco, O.
    Lopes, C. S.
    Sommer, D. E.
    Thomson, D.
    Avila, R. L.
    Tijs, B. H. A. H.
    COMPOSITE STRUCTURES, 2022, 287
  • [8] Numerical investigation on the repeated low-velocity impact behavior of composite laminates
    Zhou, Junjie
    Wen, Pihua
    Wang, Shengnan
    COMPOSITES PART B-ENGINEERING, 2020, 185
  • [9] The numerical and experimental investigation on low-velocity impact response of composite panels: Effect of fabric architecture
    Miao, Hairong
    Wu, Zhenyu
    Ying, Zhiping
    Hu, Xudong
    COMPOSITE STRUCTURES, 2019, 227
  • [10] Experimental and numerical investigation on low-velocity impact behaviour of thin hybrid carbon/aramid composite
    Zachariah, Sojan Andrews
    Pai, K. Dayananda
    Padmaraj, N. H.
    Baloor, Satish Shenoy
    ADVANCES IN MATERIALS RESEARCH-AN INTERNATIONAL JOURNAL, 2024, 13 (05):