Life cycle assessment for sustainability assessment of biofuels and bioproducts

被引:70
|
作者
Gheewala, Shabbir H. [1 ,2 ,3 ,4 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Joint Grad Sch Energy & Environm, 126 Prachauthit Rd, Tungkru 10140, Bangkok, Thailand
[2] Minist Higher Educ Sci Res & Innovat, Ctr Excellence Energy Technol & Environm CEE, Bangkok, Thailand
[3] Diponegoro Univ, Sch Postgrad Studies, Semarang 50241, Central Java, Indonesia
[4] Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Environm Sci & Engn, Chapel Hill, NC 27514 USA
来源
BIOFUEL RESEARCH JOURNAL-BRJ | 2023年 / 10卷 / 01期
关键词
Biofuel; Biomaterial; Biorefinery; Greenhouse gas; Life cycle assessment; Sustainable development; BIOENERGY; UNCERTAINTY; CARBON; FOOD; LCA;
D O I
10.18331/BRJ2023.10.1.5
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Bio-based materials have been used traditionally for millennia. Their use was overtaken in recent times by the discovery and utilization of fossil-based resources for materials and energy. However, concerns about the non-renewability of fossil resources and greenhouse gas and other emissions associated with their use have brought forth a renewed interest in using bio-based materials in recent years. The environmental advantages of bio-based materials cannot be taken for granted without a rigorous scientific assessment. Many tools based on energy, economics, and environmental impacts have been used. Life cycle assessment is one such tool developed and successfully utilized for the environmental assessment of biofuels and bioproducts. However, many methodological challenges, among other things related to system boundaries, functional units, allocation, and carbon accounting, still need further research and consideration. In this work, the related issues are summarized, and the directions for addressing them are discussed. Despite the methodological challenges in their assessment, biofuels and bioproducts show promise in terms of their environmental advantages compared to their fossil-oriented counterparts. These advantages can be further enhanced by utilizing all parts of the feedstock biomass, especially for value-added materials and chemicals via biorefineries.(c) 2023 BRTeam. All rights reserved.
引用
收藏
页码:1810 / 1815
页数:6
相关论文
共 50 条
  • [31] Is there a place for culture in life cycle sustainability assessment?
    Stefania Pizzirani
    Sarah J. McLaren
    Jeffrey K. Seadon
    The International Journal of Life Cycle Assessment, 2014, 19 : 1316 - 1330
  • [32] Is there a place for culture in life cycle sustainability assessment?
    Pizzirani, Stefania
    McLaren, Sarah J.
    Seadon, Jeffrey K.
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2014, 19 (06): : 1316 - 1330
  • [33] Product sustainability assessment for product life cycle
    He, Bin
    Luo, Ting
    Huang, Shan
    JOURNAL OF CLEANER PRODUCTION, 2019, 206 : 238 - 250
  • [34] The Use of Life Cycle Techniques in the Assessment of Sustainability
    Gundes, Selin
    URBAN PLANNING AND ARCHITECTURAL DESIGN FOR SUSTAINABLE DEVELOPMENT (UPADSD), 2016, 216 : 916 - 922
  • [35] Principles for the application of life cycle sustainability assessment
    Sonia Valdivia
    Jana Gerta Backes
    Marzia Traverso
    Guido Sonnemann
    Stefano Cucurachi
    Jeroen B. Guinée
    Thomas Schaubroeck
    Matthias Finkbeiner
    Noemie Leroy-Parmentier
    Cássia Ugaya
    Claudia Peña
    Alessandra Zamagni
    Atsushi Inaba
    Milena Amaral
    Markus Berger
    Jolanta Dvarioniene
    Tatiana Vakhitova
    Catherine Benoit-Norris
    Martina Prox
    Rajendra Foolmaun
    Mark Goedkoop
    The International Journal of Life Cycle Assessment, 2021, 26 : 1900 - 1905
  • [36] Life cycle sustainability assessment method for concrete
    Choi, Wonyoung
    Tae, Sungho
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2024,
  • [37] Letter to the Editor – Life cycle sustainability assessment without a life cycle?
    Reinout Heijungs
    Environmental Monitoring and Assessment, 2023, 195
  • [38] Letter to the Editor - Life cycle sustainability assessment without a life cycle?
    Heijungs, Reinout
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (10)
  • [39] Life Cycle Assessment of Third Generation Biofuels Production.
    Pardo, Yeniffer
    Sanchez, Eduardo
    Kafarov, Viatcheslav
    PRES 2010: 13TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2010, 21 : 1177 - 1182
  • [40] Comparison of Life Cycle Impact Assessment tools in the case of biofuels
    Landis, Amy E.
    Theis, Thomas L.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON ELECTRONICS AND THE ENVIRONMENT, 2008, : 7 - +