On the non-Riemannian quantity Ξ-curvature of (α, β)-metrics

被引:0
|
作者
Chen, Guangzu [1 ]
Liao, Jiayu [1 ]
Liu, Lihong [1 ]
机构
[1] East China Jiaotong Univ, Sch Sci, Nanchang 330013, Peoples R China
基金
中国国家自然科学基金;
关键词
(alpha; beta)-metric; Homothetic; 1-form; Xi-curvature;
D O I
10.1016/j.geomphys.2023.105056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-Riemannian quantity Xi-curvature which is very useful to characterize the Finsler metrics with constant flag curvature forms an important class in Finsler geometry. In this paper, we classify the (alpha, beta)-metrics with almost isotropic Xi-curvature. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Identifying Riemannian Singularities with Regular Non-Riemannian Geometry
    Morand, Kevin
    Park, Jeong-Hyuck
    Park, Miok
    PHYSICAL REVIEW LETTERS, 2022, 128 (04)
  • [42] String Theory and Non-Riemannian Geometry
    Park, Jeong-Hyuck
    Sugimoto, Shigeki
    PHYSICAL REVIEW LETTERS, 2020, 125 (21)
  • [43] ENERGY CONDITIONS IN NON-RIEMANNIAN SPACETIMES
    SMALLEY, LL
    KRISCH, JP
    PHYSICS LETTERS A, 1994, 196 (3-4) : 147 - 153
  • [44] NORMAL FRAMES FOR NON-RIEMANNIAN CONNECTIONS
    HARTLEY, D
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (11) : L103 - L105
  • [45] Hidden symmetries in non-Riemannian gravity
    Scipioni, R
    HELVETICA PHYSICA ACTA, 1999, 72 (03): : 211 - 219
  • [46] Superfluids in non-Riemannian spacetime background
    de Andrade, LCG
    EUROPHYSICS LETTERS, 2003, 63 (05): : 649 - 652
  • [47] NON-RIEMANNIAN GEOMETRICAL APPROACH TO DILATANCY
    SHIMBO, M
    TENSOR, 1972, 26 : 267 - 270
  • [48] On the chiral anomaly in non-Riemannian spacetimes
    Yuri N. Obukhov
    Eckehard W. Mielke
    Jan Budczies
    Friedrich W. Hehl
    Foundations of Physics, 1997, 27 : 1221 - 1236
  • [49] Non-Riemannian geometry of vortex acoustics
    de Andrade, LCG
    PHYSICAL REVIEW D, 2004, 70 (06): : 064004 - 1
  • [50] DIRAC EQUATION IN NON-RIEMANNIAN GEOMETRIES
    Formiga, J. B.
    Romero, C.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (07)