On the non-Riemannian quantity Ξ-curvature of (α, β)-metrics

被引:0
|
作者
Chen, Guangzu [1 ]
Liao, Jiayu [1 ]
Liu, Lihong [1 ]
机构
[1] East China Jiaotong Univ, Sch Sci, Nanchang 330013, Peoples R China
基金
中国国家自然科学基金;
关键词
(alpha; beta)-metric; Homothetic; 1-form; Xi-curvature;
D O I
10.1016/j.geomphys.2023.105056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-Riemannian quantity Xi-curvature which is very useful to characterize the Finsler metrics with constant flag curvature forms an important class in Finsler geometry. In this paper, we classify the (alpha, beta)-metrics with almost isotropic Xi-curvature. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Homogeneous manifolds admitting non-Riemannian Einstein-Randers metrics
    ZhiQi Chen
    ShaoQiang Deng
    Ke Liang
    Science China Mathematics, 2015, 58 : 1473 - 1482
  • [22] Homogeneous manifolds admitting non-Riemannian Einstein-Randers metrics
    CHEN ZhiQi
    DENG ShaoQiang
    LIANG Ke
    Science China Mathematics, 2015, 58 (07) : 1473 - 1482
  • [23] On an interpretation of non-Riemannian gravitation
    Teyssandier, P
    Tucker, RW
    Wang, C
    ACTA PHYSICA POLONICA B, 1998, 29 (04): : 987 - 994
  • [24] Non-Riemannian Cartan geometry
    Singh, SK
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1996, 27 (06): : 543 - 549
  • [25] ELECTROMAGNETISM IN NON-RIEMANNIAN SPACE
    PAGE, CH
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1977, 81 (1-2): : 1 - 3
  • [26] Quadratic non-Riemannian gravity
    Vassiliev, D
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2004, 11 : 204 - 216
  • [27] On Riemannian and non-Riemannian Optimisation, and Optimisation Geometry
    Lefevre, Jeanne
    Bouchard, Florent
    Said, Salem
    Le Bihan, Nicolas
    Manton, Jonathan H.
    IFAC PAPERSONLINE, 2021, 54 (09): : 578 - 583
  • [28] Doubly warped product Finsler manifolds with some non-Riemannian curvature properties
    Peyghan, Esmaeil
    Tayebi, Akbar
    Najafi, Behzad
    ANNALES POLONICI MATHEMATICI, 2012, 105 (03) : 293 - 311
  • [29] On Non-Riemannian Domain Walls
    L. C. Garcia de Andrade
    General Relativity and Gravitation, 1998, 30 : 1629 - 1637
  • [30] RIEMANN CURVATURE TENSOR IN NONHOLONOMIC COORDINATES AND NON-RIEMANNIAN SPACE-TIMES
    SMALLEY, LL
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1984, 23 (10) : 1001 - 1008