共 50 条
- [41] Spectral-Difference Low-Rank Representation Learning for Hyperspectral Anomaly Detection [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10364 - 10377
- [42] Tensor-Based Low-Rank and Sparse Prior Information Constraints for Hyperspectral Image Denoising [J]. IEEE ACCESS, 2020, 8 : 102935 - 102946
- [43] Learning Tensor Low-Rank Prior for Hyperspectral Image Reconstruction [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 12001 - 12010
- [44] HYPER-LAPLACIAN REGULARIZED LOW-RANK TENSOR DECOMPOSITION FOR HYPERSPECTRAL ANOMALY DETECTION [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6380 - 6383
- [46] Hyperspectral and Multispectral Image Fusion via Nonlocal Low-Rank Tensor Approximation and Sparse Representation [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 550 - 562
- [47] DEEP SPARSE AND LOW-RANK PRIOR FOR HYPERSPECTRAL IMAGE DENOISING [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1217 - 1220
- [50] Sparse and low-rank matrix decomposition-based method for hyperspectral anomaly detection [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (01):