Dynamic Low-Rank and Sparse Priors Constrained Deep Autoencoders for Hyperspectral Anomaly Detection

被引:24
|
作者
Lin, Sheng [1 ]
Zhang, Min [1 ]
Cheng, Xi [1 ]
Shi, Lei [1 ]
Gamba, Paolo [2 ]
Wang, Hai [1 ]
机构
[1] Xidian Univ, Sch Aerosp Sci & Technol, Xian 710071, Peoples R China
[2] Univ Pavia, Dept Elect Comp & Biomed Engn, I-27100 Pavia, Italy
基金
中国国家自然科学基金;
关键词
Anomaly detection (AD); deep autoencoder (DAE); joint optimization; low-rank prior; sparse prior; DOCKING;
D O I
10.1109/TIM.2023.3323997
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Linear-based low-rank and sparse models (LRSM) and nonlinear-based deep autoencoder (DAE) models have been proven to be effective for the task of anomaly detection (AD) in hyperspectral images (HSIs). The linear-based LRSM is self-explainable, while it may not characterize the complex scenes well. In contrast, the nonlinear-based DAE is able to extract the discriminative features between the background and anomaly for the complex scenes, whereas it is not self-explainable. To effectively combine the advantages of both, a dynamic low-rank and sparse priors-constrained DAEs (DLRSPs-DAEs) for hyperspectral AD (HAD), in this article, is proposed. In order to utilize the low-rank prior existing in an HSI, a low-rank prior-based DAE (DAE_LR) is designed to generate an excellent background reconstruction effect and terrible anomaly reconstruction performance. Further, to consider the sparsity reflecting the anomalies in the HSI, a DAE that is constrained by the sparse prior obtained by the decomposition of the HSI (DAE_S) is developed. Notably, to make the model more compact, the DAE_LR and DAE_S share a common encoder. To achieve global optimal performance, an end-to-end joint optimization strategy with the consideration of the interaction between the learning of the DAEs and the decomposition of the HSI is proposed. Additionally, to yield better detection performance, a nonlinear fusion strategy is exploited to comprehensively combine the detection results obtained from both the DAE_LR and DAE_S. Extensive experiments conducted on several datasets show that the proposed DLRSPs-DAEs detector achieves tremendous performance with respect to the classical and state-of-the-art detectors.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] Deep Low-Rank Prior for Hyperspectral Anomaly Detection
    Wang, Shaoyu
    Wang, Xinyu
    Zhang, Liangpei
    Zhong, Yanfei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
    Pagare, M. S.
    Risodkar, Y. R.
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMMUNICATION AND COMPUTING TECHNOLOGY (ICACCT), 2018, : 594 - 597
  • [3] LOW-RANK AND SPARSE TENSOR RECOVERY FOR HYPERSPECTRAL ANOMALY DETECTION
    Dai, Jiahui
    Deng, Chenwei
    Wang, Wenzheng
    Liu, Xun
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1141 - 1144
  • [4] Spectral-spatial stacked autoencoders based on low-rank and sparse matrix decomposition for hyperspectral anomaly detection
    Zhao, Chunhui
    Zhang, Lili
    INFRARED PHYSICS & TECHNOLOGY, 2018, 92 : 166 - 176
  • [5] TENSOR LOW-RANK SPARSE REPRESENTATION LEARNING FOR HYPERSPECTRAL ANOMALY DETECTION
    Xiao, Qingjiang
    Zhao, Liaoying
    Chen, Shuhan
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7356 - 7359
  • [6] Low-Rank and Sparse Decomposition With Mixture of Gaussian for Hyperspectral Anomaly Detection
    Li, Lu
    Li, Wei
    Du, Qian
    Tao, Ran
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (09) : 4363 - 4372
  • [7] Anomaly Detection in Hyperspectral imagery based on Low-Rank and Sparse Decomposition
    Cui, Xiaoguang
    Tian, Yuan
    Weng, Lubin
    Yang, Yiping
    FIFTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2013), 2014, 9069
  • [8] Anomaly Detection in Hyperspectral Images Based on Low-Rank and Sparse Representation
    Xu, Yang
    Wu, Zebin
    Li, Jun
    Plaza, Antonio
    Wei, Zhihui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (04): : 1990 - 2000
  • [9] Image Restoration: From Sparse and Low-Rank Priors to Deep Priors
    Zhang, Lei
    Zuo, Wangmeng
    IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (05) : 172 - 179
  • [10] Hyperspectral Image Denoising and Anomaly Detection Based on Low-Rank and Sparse Representations
    Zhuang, Lina
    Gao, Lianru
    Zhang, Bing
    Fu, Xiyou
    Bioucas-Dias, Jose M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60