An S-scheme heterojunction of single Ni sites decorated ultrathin carbon nitride and Bi2WO6 for highly efficient photothermal CO2 conversion to syngas

被引:5
|
作者
Wu, Jiaming [1 ]
Li, Keyan [1 ]
An, Sufeng [1 ,2 ]
Yan, Siyang [1 ]
Liu, Jiaxu [1 ]
Song, Chunshan [1 ,3 ]
Guo, Xinwen [1 ]
机构
[1] Dalian Univ Technol, Frontiers Sci Ctr Smart Mat, PSU DUT Joint Ctr Energy Res, Sch Chem Engn,State Key Lab Fine Chem, Dalian 116024, Peoples R China
[2] SINOPEC Dalian Res Inst Petr & Petrochem Co Ltd, Dalian 116045, Peoples R China
[3] Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong 999077, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
CO2; reduction; Photothermal catalysis; Heterojunction; Ultrathin carbon nitride; Syngas; PHOTOCATALYTIC PERFORMANCE; ACTIVE-SITES; METAL; REDUCTION; CATALYSIS;
D O I
10.1016/j.apcatb.2024.123822
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar-driven conversion of CO2 and H2O to value-added chemicals or fuels is an ideal strategy to tackle the energy crisis and environmental issues. However, construction of highly efficient photosynthesis systems remains a challenge. This work reports a heterojunction catalyst consisting of ultrathin carbon nitride with single Ni sites and Bi2WO6 for photothermal conversion of CO2 and H2O to syngas. The catalyst exhibits exceptional activity at medium temperature of 250 degrees C, with CO and H-2 production rates of 4493 and 9191 mu mol g(-1) h(-1), respectively. Experimental results and DFT calculations reveal that the construction of S-scheme heterojunction and the introduction of single Ni sites greatly improve the separation of photogenerated carriers as well as the adsorption and activation of CO2. Meanwhile, it is proved that light drives the generation of H+ and activates the CO2 molecules, while heat accelerates the generation and diffusion of H+. The photothermal synergistic effect promotes the catalyst activity by two orders of magnitude.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A novel hierarchical nanostructured S-scheme RGO/Bi2MoO6/Bi2WO6 heterojunction: Excellent photocatalytic degradation activity for pollutants
    Chen, Ruifang
    Zhou, Wei
    Qu, Wenwen
    Wang, Yijun
    Shi, Liyan
    Chen, Shangmin
    APPLIED SURFACE SCIENCE, 2022, 588
  • [32] Ultrathin 2D/2D Graphdiyne/Bi2WO6 Heterojunction for Gas-Phase CO2 Photoreduction
    Yang, Chao
    Wang, Yajie
    Yu, Jiaguo
    Cao, Shaowen
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (09) : 8734 - 8738
  • [33] 2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction
    Cao, Shaowen
    Shen, Baojia
    Tong, Tong
    Fu, Junwei
    Yu, Jiaguo
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (21)
  • [34] Novel inverse opal Bi2WO6/Bi2O3 S-scheme heterojunction with efficient charge separation and fast migration for high activity photocatalysis
    Liu, Wenliang
    Li, Xiaohan
    Qi, Kai
    Wang, Yan
    Wen, Fushan
    Wang, Jiqian
    APPLIED SURFACE SCIENCE, 2023, 607
  • [35] S-scheme heterojunction photocatalysts for CO2 conversion: Design, characterization and categories
    Meng A.
    Zhu B.
    Zhong Y.
    Zhou S.
    Han P.
    Su Y.
    Energy Reviews, 2023, 2 (04):
  • [36] Ultrathin Bi2WO6 nanosheet decorated with Pt nanoparticles for efficient formaldehyde removal at room temperature
    Sun, Dong
    Le, Yao
    Jiang, Chuanjia
    Cheng, Bei
    APPLIED SURFACE SCIENCE, 2018, 441 : 429 - 437
  • [37] Modulation of internal electric field in S-scheme heterojunction towards efficient photocatalytic CO2 conversion
    Chen, Dongdong
    Wang, Zhongliao
    Zhang, Jinfeng
    Ruzimuradov, Olim
    Mamatkulov, Shavkat
    Dai, Kai
    Low, Jingxiang
    MATERIALS TODAY PHYSICS, 2024, 40
  • [38] Nanoengineering of ultrathin N-CQDs/Bi2WO6 S-scheme heterojunction for enhanced photodegradation of antibiotics as emerging contaminants: Mechanism insight and toxicity assessment
    Ren, Haitao
    Wang, Shuochen
    Labidi, Abdelkader
    Pan, Bao
    Luo, Jianmin
    Wang, Chuanyi
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 362
  • [39] Enhanced photocatalytic activity of graphitic carbon nitride/carbon nanotube/Bi2WO6 ternary Z-scheme heterojunction with carbon nanotube as efficient electron mediator
    Jiang, Deli
    Ma, Wanxia
    Xiao, Peng
    Shao, Leqiang
    Li, Di
    Chen, Min
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 512 : 693 - 700
  • [40] Bi2WO6/COF S-scheme heterostructure photocatalyst for H2O2 production
    Liu, Han
    Zhang, Jun
    Xu, Quanlong
    Tao, Hong
    Di, Tingmin
    Deng, Quanrong
    Wang, Shenggao
    JOURNAL OF MATERIALS CHEMISTRY A, 2025,