An S-scheme heterojunction of single Ni sites decorated ultrathin carbon nitride and Bi2WO6 for highly efficient photothermal CO2 conversion to syngas

被引:5
|
作者
Wu, Jiaming [1 ]
Li, Keyan [1 ]
An, Sufeng [1 ,2 ]
Yan, Siyang [1 ]
Liu, Jiaxu [1 ]
Song, Chunshan [1 ,3 ]
Guo, Xinwen [1 ]
机构
[1] Dalian Univ Technol, Frontiers Sci Ctr Smart Mat, PSU DUT Joint Ctr Energy Res, Sch Chem Engn,State Key Lab Fine Chem, Dalian 116024, Peoples R China
[2] SINOPEC Dalian Res Inst Petr & Petrochem Co Ltd, Dalian 116045, Peoples R China
[3] Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong 999077, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
CO2; reduction; Photothermal catalysis; Heterojunction; Ultrathin carbon nitride; Syngas; PHOTOCATALYTIC PERFORMANCE; ACTIVE-SITES; METAL; REDUCTION; CATALYSIS;
D O I
10.1016/j.apcatb.2024.123822
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar-driven conversion of CO2 and H2O to value-added chemicals or fuels is an ideal strategy to tackle the energy crisis and environmental issues. However, construction of highly efficient photosynthesis systems remains a challenge. This work reports a heterojunction catalyst consisting of ultrathin carbon nitride with single Ni sites and Bi2WO6 for photothermal conversion of CO2 and H2O to syngas. The catalyst exhibits exceptional activity at medium temperature of 250 degrees C, with CO and H-2 production rates of 4493 and 9191 mu mol g(-1) h(-1), respectively. Experimental results and DFT calculations reveal that the construction of S-scheme heterojunction and the introduction of single Ni sites greatly improve the separation of photogenerated carriers as well as the adsorption and activation of CO2. Meanwhile, it is proved that light drives the generation of H+ and activates the CO2 molecules, while heat accelerates the generation and diffusion of H+. The photothermal synergistic effect promotes the catalyst activity by two orders of magnitude.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] 2D-2D WO3-Bi2WO6 photocatalyst with an S-scheme heterojunction for highly efficient Cr(vi) reduction
    Zhao, Nan-Nan
    Zhang, Yi
    Liu, Meng-Qi
    Peng, Yin
    Liu, Jin-Yun
    CRYSTENGCOMM, 2022, 24 (39) : 6902 - 6909
  • [22] Insight into the properties, morphologies and photocatalytic applications of S-scheme Bi2WO6
    Mandyal, Parteek
    Guleria, Ankita
    Sharma, Rohit
    Sambyal, Shabnam
    Priye, Aashish
    Fang, Baizeng
    Shandilya, Pooja
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (06):
  • [23] Novel MoSSe/Bi2WO6 S-scheme heterojunction photocatalysts for significantly improved photoelectrochemical and photocatalytic performance
    Xiong, Xiaoshan
    Yang, Han
    Zhang, Jun
    Lin, Jiacen
    Yang, Shuai
    Chen, Chao
    Xi, Junhua
    Kong, Zhe
    Song, Lihui
    Zeng, Jinghui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 933
  • [24] S-scheme heterojunction of crystalline carbon nitride nanosheets and ultrafine WO3 nanoparticles for photocatalytic CO2 reduction
    Chen, Gongjie
    Zhou, Ziruo
    Li, Bifang
    Lin, Xiahui
    Yang, Can
    Fang, Yuanxing
    Lin, Wei
    Hou, Yidong
    Zhang, Guigang
    Wang, Sibo
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2024, 140 : 103 - 112
  • [25] Rational Design of an Efficient S-Scheme Heterojunction of CdS/Bi2WO6-S Nanocomposites for Photocatalytic CO2Reduction
    Hao M.
    Wei D.
    Li Z.
    Energy and Fuels, 2022, 36 (19): : 11524 - 11531
  • [26] Construction of NH2-MIL-101(Fe)@Bi2MoO6 S-scheme heterojunction for efficient and selective photocatalytic CO2 conversion to CO
    Feng, Huifang
    Sun, Yitong
    Xu, Qiaozhen
    Liu, Hong
    APPLIED CATALYSIS A-GENERAL, 2023, 664
  • [27] MAPbBr3/Bi2WO6 Z-scheme-heterojunction photocatalysts for photocatalytic CO2 reduction
    Yawen Zhang
    Njemuwa Nwaji
    Lihua Wu
    Mingliang Jin
    Jaebeom Lee
    Guofu Zhou
    Michael Giersig
    Xin Wang
    Tengfei Qiu
    Eser Metin Akinoglu
    Journal of Materials Science, 2024, 59 : 1498 - 1512
  • [28] Robust photoelectrocatalytic degradation of antibiotics by organic-inorganic PDISA/Bi2WO6 S-scheme heterojunction membrane
    Liu, Mingyue
    Wan, Yiyang
    Wang, Yong
    Xu, Jilin
    Li, Xibao
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (02):
  • [29] Bi-functional S-scheme S-Bi2WO6/NiO heterojunction for photocatalytic ciprofloxacin degradation and CO2 reduction: Mechanisms and pathways
    Li, Zhihong
    Li, Zuji
    Liang, Jiaxiang
    Fan, Wenjie
    Li, Yuhe
    Shen, Yuxiang
    Huang, Dongsheng
    Yu, Zebin
    Wang, Shuangfei
    Hou, Yanping
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 310
  • [30] MAPbBr3/Bi2WO6 Z-scheme-heterojunction photocatalysts for photocatalytic CO2 reduction
    Zhang, Yawen
    Nwaji, Njemuwa
    Wu, Lihua
    Jin, Mingliang
    Lee, Jaebeom
    Zhou, Guofu
    Giersig, Michael
    Wang, Xin
    Qiu, Tengfei
    Akinoglu, Eser Metin
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (04) : 1498 - 1512