LOW LIGHT RGB AND IR IMAGE FUSION WITH SELECTIVE CNN-TRANSFORMER NETWORK

被引:0
|
作者
Jin, Haiyan [1 ]
Yang, Yue [1 ]
Su, Haonan [1 ]
Xiao, Zhaolin [1 ]
Wang, Bin [1 ]
机构
[1] Xian Univ Technol, Sch Comp Sci & Engn, Shaanxi Key Lab Network Comp & Secur Technol, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Transformer; Image Fusion; Low Light Enhancement; Infrared image; Visible image; NEST;
D O I
10.1109/ICIP49359.2023.10222611
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In low-light images, contrast and brightness are corrupted, making it difficult to accurately percept detail and edge information with the naked eye. Because of the development of multi sensor imaging, RGB-IR image fusion can enhance the imaging quality in low light conditions. However, the existing fusion algorithms have insufficient enhancement, distorted detail and low contrast, which make it difficult to generate high-quality fusion results. In this paper, we propose a Transformer-CNN image fusion method which considers global-local features fusion for low light image enhancement. The ConvGRU module is developed to alternatively select the global and local features with Transformer and CNN network. To effectively improve the network performance, a learnable weight adaptive loss function is proposed to adjust the weight of loss functions during training. Numerous experiments prove that our method can enrich fusion image information, improve image contrast and edge in low-light scenes compared to state of the art methods.
引用
收藏
页码:1255 / 1259
页数:5
相关论文
共 50 条
  • [31] HCformer: Hybrid CNN-Transformer for LDCT Image Denoising
    Yuan, Jinli
    Zhou, Feng
    Guo, Zhitao
    Li, Xiaozeng
    Yu, Hengyong
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (05) : 2290 - 2305
  • [32] HCformer: Hybrid CNN-Transformer for LDCT Image Denoising
    Jinli Yuan
    Feng Zhou
    Zhitao Guo
    Xiaozeng Li
    Hengyong Yu
    Journal of Digital Imaging, 2023, 36 (5) : 2290 - 2305
  • [33] Semhybridnet: a semantically enhanced hybrid CNN-transformer network for radar pulse image segmentation
    Liu, Hongjia
    Xiao, Yubin
    Wu, Xuan
    Li, Yuanshu
    Zhao, Peng
    Liang, Yanchun
    Wang, Liupu
    Zhou, You
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (02) : 2851 - 2868
  • [34] Hybrid CNN-transformer network for efficient CSI feedback
    Zhao, Ruohan
    Liu, Ziang
    Song, Tianyu
    Jin, Jiyu
    Jin, Guiyue
    Fan, Lei
    PHYSICAL COMMUNICATION, 2024, 66
  • [35] Semhybridnet: a semantically enhanced hybrid CNN-transformer network for radar pulse image segmentation
    Hongjia Liu
    Yubin Xiao
    Xuan Wu
    Yuanshu Li
    Peng Zhao
    Yanchun Liang
    Liupu Wang
    You Zhou
    Complex & Intelligent Systems, 2024, 10 : 2851 - 2868
  • [36] FFSwinNet: CNN-Transformer Combined Network With FFT for Shale Core SEM Image Segmentation
    Feng, Yilong
    Jia, Lijuan
    Zhang, Jinchuan
    Chen, Junqi
    IEEE ACCESS, 2024, 12 : 73021 - 73032
  • [37] A hierarchical CNN-Transformer model for network intrusion detection
    Luo, Sijie
    Zhao, Zhiheng
    Hu, Qiyuan
    Liu, Yang
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [38] An efficient speech emotion recognition based on a dual-stream CNN-transformer fusion network
    Tellai M.
    Gao L.
    Mao Q.
    International Journal of Speech Technology, 2023, 26 (02) : 541 - 557
  • [39] LightingFormer: Transformer-CNN hybrid network for low-light image enhancement
    Bi, Cong
    Qian, Wenhua
    Cao, Jinde
    Wang, Xue
    COMPUTERS & GRAPHICS-UK, 2024, 124
  • [40] CNN-Transformer Hybrid Architecture for Underwater Sonar Image Segmentation
    Lei, Juan
    Wang, Huigang
    Lei, Zelin
    Li, Jiayuan
    Rong, Shaowei
    REMOTE SENSING, 2025, 17 (04)